Math, asked by thefakesmiler, 5 months ago


please help me to solve the given question.​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{ {x}^{2}   - ax}{b}  +  \frac{ {x}^{2}  - bx}{a}  +  \frac{ {x}^{2} - 3ax - 3bx }{a + b}  = 0 \\

Taking x common from each term,

x( \frac{x - a}{b}  +  \frac{x - b}{a}  +  \frac{x - 3a - 3b}{a + b}) = 0 \\

either \:  \: x = 0 \:  \: or \:  \:  \frac{x - a}{b}  +  \frac{x - b}{a}  +  \frac{x - 3(a + b)}{a + b} = 0 \\

Now, consider the second case:

 \frac{x}{b}  -  \frac{a}{b}  +  \frac{x}{a}  -  \frac{b}{a}  +  \frac{x}{a + b}  - 3 = 0 \\

  \implies( \frac{x}{b}  +  \frac{x}{a}  +  \frac{x}{a + b} ) - ( \frac{a}{b}  +  \frac{b}{a}  + 3) = 0 \\

 \implies \: x( \frac{a(a + b) +b(a + b) + ab }{ab(a + b)} ) - ( \frac{ {a}^{2} +  {b}^{2}  - 3ab}{ab} ) =  \\

 \implies x(\frac{ {a}^{2}  +  {b}^{2} + 3ab }{ab(a + b)} ) +  (\frac{ {a}^{2} +  {b}^{2}   -  3ab }{ab})  = 0 \\

 \implies x(\frac{ {a}^{2}  +  {b}^{2} + 3ab }{ab(a + b)} )  = -    (\frac{ {a}^{2} +  {b}^{2}   -  3ab }{ab})  \\

 \implies \: x =   - \frac{(a + b)( {a}^{2}  +  {b}^{2}  - 3ab) }{( {a}^{2} +  {b}^{2}   + 3ab)}

Similar questions