Math, asked by gokulanup2, 5 months ago

Please help me to solve this.​

Attachments:

Answers

Answered by Asterinn
5

 \rm \longrightarrow\lim \limits_{x \rightarrow0}{ \dfrac{ {e}^{x}  -  {e}^{ - x} - 2x }{x - sin \: x} } \\  \\ \rm \longrightarrow\lim \limits_{x \rightarrow0}{ \dfrac{ {e}^{x}   +  {e}^{ - x} - 2 }{1- cos\: x} }\\  \\ \rm \longrightarrow\lim \limits_{x \rightarrow0}{ \dfrac{ {e}^{x}    -   {e}^{  -x} - 0 }{0 + sin\: x} }\\  \\ \rm \longrightarrow\lim \limits_{x \rightarrow0}{ \dfrac{ {e}^{x}     +   {e}^{  -  x} - 0 }{cos \: x} } \\ \\   \\\rm \longrightarrow \dfrac{ {e}^{0}     +    \dfrac{1}{{e}^{  0}}   }{cos \: 0} \\  \\    \\\rm \longrightarrow \dfrac{ 1  +  1  }{1} = 2

While solving this question we have applied L' hospital rule wherever we are getting 0/0 form. In this we have to differentiate numerator and denominator seperately.

Additional-Information :-

While applying L' hospital rule we have to differentiate. To differentiate we must know basic differentiation formulae :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Similar questions