Math, asked by start62, 6 months ago

please help me to solve this both sums​

Attachments:

Answers

Answered by MaIeficent
8

Step-by-step explanation:

Question:-

A and B can do a piece of work in 20 days, B and C can do it in 15 days, C and A can do it in 12 days.

(i) How long will they take to finish the work together.

(ii) How long would each take to do the same work.

Solution:-

\rm A \: and\: B \: can\: do \: the \: work \: in \: 20 \: days

\rm (A + B)'s\: 1 \: day \: work = \dfrac{1}{20}

\rm B \: and\: C \: can\: do \: the \: work \: in \: 15 \: days

\rm (B + C)'s\: 1 \: day \: work = \dfrac{1}{15}

\rm C \: and\: A \: can\: do \: the \: work \: in \: 12 \: days

\rm (C + A)'s\: 1 \: day \: work = \dfrac{1}{12}

Time taken by A, B and C if they work together.

\rm \dashrightarrow (A+B) + (B + C) + (C + A) = \dfrac{1}{20} + \dfrac{1}{15} + \dfrac{1}{12}

\rm \dashrightarrow A+B+ B + C+ C + A = \dfrac{3 + 4 + 5}{60}

\rm \dashrightarrow 2A + 2B + 2C= \dfrac{12}{60}

\rm \dashrightarrow 2(A + B + C) = \dfrac{1}{15}

\rm \dashrightarrow A+B+ C= \dfrac{1}{10}

\rm (A + B + C)'s \: 1 \: work \: = \dfrac{1}{10}

\rm \therefore A, \: B \: and \: C \: together \: can \: finish \: the \: work \: in \: 10\:days

Now,

Time taken by A alone to finish the work:-

\rm \dashrightarrow A's \: 1 \: day \: work = (A + B + C)'s \: 1 \: day \: work - (B + C)'s\: 1 \: day \: work

\rm  = \dfrac{1}{10} - \dfrac{1}{15}

\rm  = \dfrac{3 - 2}{30} = \dfrac{1}{30}

\rm \dashrightarrow A's \: 1 \: day \:  work = \dfrac{1}{30}

\rm So, \: A \: alone\: can \: do \: the \: work \: in \: 30 \: days

Time taken by B alone to finish the work:-

\rm \dashrightarrow  B's \: 1 \: day \: work = (A + B + C)'s \: 1 \: day \: work - (A + C)'s\: 1 \: day \: work

\rm  = \dfrac{1}{10} - \dfrac{1}{12}

\rm  = \dfrac{6 - 5}{60} = \dfrac{1}{60}

\rm \dashrightarrow B's \: 1 \: day \:  work = \dfrac{1}{60}

\rm So, \: B \: alone\: can \: do \: the \: work \: in \: 60 \: days

Time taken by C alone to finish the work:-

\rm \dashrightarrow C's \: 1 \: day \: work = (A + B + C)'s \: 1 \: day \: work - (A + B)'s\: 1 \: day \: work

\rm  = \dfrac{1}{10} - \dfrac{1}{20}

\rm  = \dfrac{2 - 1}{20} = \dfrac{1}{20}

\rm \dashrightarrow C's \: 1 \: day \:  work = \dfrac{1}{20}

\rm So, \: C \: alone\: can \: do \: the \: work \: in \: 20 \: days

Similar questions