Math, asked by PapaPrincessUrvashi, 9 months ago

please help me to solve this. but if you don't know answer then don't answer anything else. if you dare to do this then you will be reported.¯\_(ツ)_/¯​

Attachments:

Answers

Answered by MOSFET01
10

Solutions :

1) Use the law of exponents & write answer in positive exponents.

(a)  \Big(\dfrac{1}{3}\Big)^{-4}

\implies \Big(\dfrac{3}{1}\Big)^{4}

\implies 3^4

\implies 81

(b)\Big(\dfrac{-2}{5}\Big)^{-6}

\implies \Big(\dfrac{-5}{2}\Big)^{6}

\implies \dfrac{15625}{64}

(c)  (-3)^{2}\times (-3)^{3}

\implies (-3)^{2+3}

\implies (-3)^{5}

(d)  \Big(\dfrac{5}{4}\Big)^4\times \Big(\dfrac{5}{4}\Big)^{-3}

\implies \Big(\dfrac{5}{4}\Big)^{4-3}

\implies \dfrac{5}{4}

(e)  \Big(\dfrac{5}{13}\Big)^{-4}\times \Big(\dfrac{5}{13}\Big)^{-2}

\implies \Big(\dfrac{5}{13}\Big)^{-4-2}

\implies \Big(\dfrac{5}{13})^{-6}

\implies \Big(\dfrac{13}{5})^{6}

(f) (2)^2 \times (2)^3\times (2)^4

\implies (2)^{2+3+4}

\implies (2)^{9}

(g)  (4)^{3}\: \div\:4^{5}

 \implies 4^{3-5}

\implies \Big(\dfrac{1}{4}\Big)^{2}

(h)  (6)^{2}\:\div\:(6)^{-1}

 \implies 6^{(2-(-1))}

 \implies 6^{3}

(i) \Big(\dfrac{-1}{5}\Big)^{3} \: \div\: \Big(\dfrac{-1}{5}\Big)^{2}

\implies \Big(\dfrac{-1}{5}\Big)^{3-2}

\implies \Big(\dfrac{-1}{5}\Big)^{-1}

\implies \Big(\dfrac{-5}{1}\Big)^{1}

 \implies -5

(j) \Big[\Big(\dfrac{-1}{3}\Big)^4\Big]^{-2}

\implies \Big(\dfrac{-1}{3}\Big)^{-8}

\implies \Big(-3\Big)^{8}

(k)  (5^2)^{0}

\implies (5)^{2\times0}

\implies (5)^{0}

\implies 1

(l) 9³ ÷ 729

= 9³ ÷ 9³

= 9³¯³

= 9¹

= 9

(3) Simplify the following :

(a) z² × z³

\implies z^{2+3}

\implies z^{5}

(b)  z^0

\implies 1

(c)  (z^5)^{-2}

\implies z^{(5\times-2)}

\implies z^{-10}

(d)  z^5\: \div\: z^6

\implies z^{(5-6)}

\implies z^{-1}

\implies \dfrac{1}{z}

(e)  5^z\:\times\: 2^z

\implies (5\times2)^z

\implies 10^z

(f)  3^{z}\: \div\: 4^{z}

\implies \Big(\dfrac{3}{4}\Big)^z

(g) \dfrac{z^3}{z^5}\:\times z^2

\implies z^{3-5+2}

\implies z^{5-5}

\implies z^{0}

\implies 1

(h)  4 \times z^2

\implies 2^2 \times z^2

\implies (2z)^2

For Answer 2 & 4 refer attachment

Attachments:
Answered by praweshtulsyan2010
0

Answer:

please mark me as brainleast

Attachments:
Similar questions