Math, asked by PapaPrincessUrvashi, 10 months ago

please help me to solve this. but if you don't know answer then don't answer anything else. if you dare to do this then you will be reported.¯\_(ツ)_/¯​

Attachments:

Answers

Answered by MOSFET01
10

Solutions :

1) Use the law of exponents & write answer in positive exponents.

(a)  \Big(\dfrac{1}{3}\Big)^{-4}

\implies \Big(\dfrac{3}{1}\Big)^{4}

\implies 3^4

\implies 81

(b)\Big(\dfrac{-2}{5}\Big)^{-6}

\implies \Big(\dfrac{-5}{2}\Big)^{6}

\implies \dfrac{15625}{64}

(c)  (-3)^{2}\times (-3)^{3}

\implies (-3)^{2+3}

\implies (-3)^{5}

(d)  \Big(\dfrac{5}{4}\Big)^4\times \Big(\dfrac{5}{4}\Big)^{-3}

\implies \Big(\dfrac{5}{4}\Big)^{4-3}

\implies \dfrac{5}{4}

(e)  \Big(\dfrac{5}{13}\Big)^{-4}\times \Big(\dfrac{5}{13}\Big)^{-2}

\implies \Big(\dfrac{5}{13}\Big)^{-4-2}

\implies \Big(\dfrac{5}{13})^{-6}

\implies \Big(\dfrac{13}{5})^{6}

(f) (2)^2 \times (2)^3\times (2)^4

\implies (2)^{2+3+4}

\implies (2)^{9}

(g)  (4)^{3}\: \div\:4^{5}

 \implies 4^{3-5}

\implies \Big(\dfrac{1}{4}\Big)^{2}

(h)  (6)^{2}\:\div\:(6)^{-1}

 \implies 6^{(2-(-1))}

 \implies 6^{3}

(i) \Big(\dfrac{-1}{5}\Big)^{3} \: \div\: \Big(\dfrac{-1}{5}\Big)^{2}

\implies \Big(\dfrac{-1}{5}\Big)^{3-2}

\implies \Big(\dfrac{-1}{5}\Big)^{-1}

\implies \Big(\dfrac{-5}{1}\Big)^{1}

 \implies -5

(j) \Big[\Big(\dfrac{-1}{3}\Big)^4\Big]^{-2}

\implies \Big(\dfrac{-1}{3}\Big)^{-8}

\implies \Big(-3\Big)^{8}

(k)  (5^2)^{0}

\implies (5)^{2\times0}

\implies (5)^{0}

\implies 1

(l) 9³ ÷ 729

= 9³ ÷ 9³

= 9³¯³

= 9¹

= 9

(3) Simplify the following :

(a) z² × z³

\implies z^{2+3}

\implies z^{5}

(b)  z^0

\implies 1

(c)  (z^5)^{-2}

\implies z^{(5\times-2)}

\implies z^{-10}

(d)  z^5\: \div\: z^6

\implies z^{(5-6)}

\implies z^{-1}

\implies \dfrac{1}{z}

(e)  5^z\:\times\: 2^z

\implies (5\times2)^z

\implies 10^z

(f)  3^{z}\: \div\: 4^{z}

\implies \Big(\dfrac{3}{4}\Big)^z

(g) \dfrac{z^3}{z^5}\:\times z^2

\implies z^{3-5+2}

\implies z^{5-5}

\implies z^{0}

\implies 1

(h)  4 \times z^2

\implies 2^2 \times z^2

\implies (2z)^2

For Answer 2 & 4 refer attachment

Attachments:
Answered by praweshtulsyan2010
0

Answer:

please mark me as brainleast

Attachments:
Similar questions