Math, asked by dipankarmondal22, 9 months ago

please help me to solve this problem

Attachments:

Answers

Answered by BrainlyPopularman
17

GIVEN :–

  \:  \:  \:  \bf \displaystyle \bf \: \lim_{x \to0} \frac{ \sqrt{a + x} -  \sqrt{a} }{x}

TO FIND :

▪︎ Value = ?

SOLUTION :

Let the function –

  \implies \bf \:A \:  = \displaystyle \bf \: \lim_{x \to0} \frac{ \sqrt{a + x} -  \sqrt{a} }{x}

• Using rationalization method –

 \bf \implies A= \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{ \sqrt{a + x} -  \sqrt{a} }{x} \times  \dfrac{ \sqrt{a + x}  +  \sqrt{a}}{ \sqrt{a + x}  +  \sqrt{a}}  \right]

 \bf \implies A= \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{( \sqrt{a + x} -  \sqrt{a} )(\sqrt{a + x}  +  \sqrt{a})}{x( \sqrt{a + x}  +  \sqrt{a})} \right]

• Using identity –

  \:  \blacktriangleright \:  \bf (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

• So that –

  \implies \bf \:A \:  = \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{( \sqrt{a + x})^{2} -  (\sqrt{a})^{2}}{x( \sqrt{a + x}  +  \sqrt{a})} \right]

  \implies \bf \:A \:  = \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{(a + x) - (a)}{x( \sqrt{a + x}  +  \sqrt{a})} \right]

  \implies \bf \:A \:  = \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{ \cancel x}{ \cancel x( \sqrt{a + x}  +  \sqrt{a})} \right]

  \implies \bf \:A \:  = \displaystyle  \bf \: \lim_{x \to0}\left[ \dfrac{1}{( \sqrt{a + x}  +  \sqrt{a})} \right]

• Now Apply limits –

  \implies \bf \:A \:  = \left[ \dfrac{1}{( \sqrt{a +(0)}  +  \sqrt{a})} \right]

  \implies \bf \:A \:  =  \dfrac{1}{ \sqrt{a} +  \sqrt{a}  }

  \implies \large{ \boxed{ \bf \:A \:  =  \dfrac{1}{ 2\sqrt{a}}}}

Similar questions