Math, asked by harekamjotsandhu, 1 month ago

Please help me to solve this problem.
I have an answer also. But i don't know how to solve. ​

Attachments:

Answers

Answered by Unexplained
4

________________________________

Here, ∠ 1 + ∠ 4 = 180 ° ( Linear pair Axiom )

Let the ratios be X.

________________________________

Now,

∠ 1 + ∠ 4 = 180 °

⇒ X + 5X = 180 °

⇒ 6X = 180 °

⇒ X = 180 ÷ 6

⇒ X = 30 °

________________________________

Now,

  • ∠ 1 = X = 30 °

  • ∠ 4 = 5X = 30 × 5 = 150 °

________________________________

∠ 4 = ∠ 2 ( Vertically Opposite Angles )

Or, ∠ 2 = 150 °

________________________________

∠ 1 = ∠ 3 ( Vertically Opposite Angles )

Or, ∠ 3 = 30 °

________________________________

∠ 2 = ∠ 6 ( Corresponding Angles )

Or, ∠ 6 = 150 °

________________________________

∠ 6 = ∠ 8 ( Vertically Opposite Angles )

Or, ∠ 8 = 150 °

________________________________

∠ 1 = ∠ 5 ( Corresponding Angles )

Or, ∠ 5 = 30 °

________________________________

∠ 5 = ∠ 7 ( Vertically Opposite Angles )

Or, ∠ 7 = 30 °

________________________________

Please refer to the Attached image for Examples related to Angles. You'll be able to put it more clearly.

________________________________

Attachments:
Answered by BrainlyTwinklingstar
5

Answer

We know that, the angles 1 and 4 are in the ratio of 1:5 and they are a pair of linear angles. So,

Value of ∠1 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{1} + \angle{4} = {180}^{\circ}

\sf \dashrightarrow 1x + 5x = {180}^{\circ}

\sf \dashrightarrow 6x = {180}^{\circ}

\sf \dashrightarrow x = \dfrac{180}{6}

\sf \dashrightarrow x = 30

\sf \dashrightarrow \angle{1} = {30}^{\circ}

Value of ∠2 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{1} + \angle{2} = {180}^{\circ}

\sf \dashrightarrow {30}^{\circ} + \angle{2} = {180}^{\circ}

\sf \dashrightarrow \angle{2} = 180 - 30

\sf \dashrightarrow \angle{2} = {150}^{\circ}

Value of ∠3 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{2} + \angle{3} = {180}^{\circ}

\sf \dashrightarrow {150}^{\circ} + \angle{3} = {180}^{\circ}

\sf \dashrightarrow \angle{3} = 180 - 150

\sf \dashrightarrow \angle{3} = {30}^{\circ}

Value of ∠4 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{3} + \angle{4} = {180}^{\circ}

\sf \dashrightarrow {30}^{\circ} + \angle{4} = {180}^{\circ}

\sf \dashrightarrow \angle{4} = 180 - 30

\sf \dashrightarrow \angle{4} = {150}^{\circ}

Value of ∠5 :

\sf \dashrightarrow Interior \: angles \: on \: same \: side = {180}^{\circ}

\sf \dashrightarrow \angle{4} + \angle{5} = {180}^{\circ}

\sf \dashrightarrow {150}^{\circ} + \angle{5} = {180}^{\circ}

\sf \dashrightarrow \angle{5} = 180 - 150

\sf \dashrightarrow \angle{5} = {30}^{\circ}

Value of ∠6 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{5} + \angle{6} = {180}^{\circ}

\sf \dashrightarrow {30}^{\circ} + \angle{6} = {180}^{\circ}

\sf \dashrightarrow \angle{6} = 180 - 30

\sf \dashrightarrow \angle{6} = {150}^{\circ}

Value of ∠7 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{6} + \angle{7} = {180}^{\circ}

\sf \dashrightarrow {150}^{\circ} + \angle{7} = {180}^{\circ}

\sf \dashrightarrow \angle{7} = 180 - 150

\sf \dashrightarrow \angle{7} = {30}^{\circ}

Value of ∠8 :

\sf \dashrightarrow Straight \: line \: angle = {180}^{\circ}

\sf \dashrightarrow \angle{7} + \angle{8} = {180}^{\circ}

\sf \dashrightarrow {30}^{\circ} + \angle{8} = {180}^{\circ}

\sf \dashrightarrow \angle{8} = 180 - 30

\sf \dashrightarrow \angle{8} = {150}^{\circ}

Similar questions