Math, asked by brainyboy041126, 11 months ago

please help me to solve this question​

Attachments:

Answers

Answered by aadarshraj3
2

Answer:

the answer is uploaded with the photo if you find any query then plz..... ask me

Attachments:
Answered by TheInsaneGirl
7

{\huge{\red{\mathtt{Hey\:Mate!!}}}}

{\bold{\underline{Here\:is\:the\:answer}}}

 =  >  \frac{sin \: ( \theta  +  \alpha ) + cos \: ( \theta -  \alpha )}{sin \: ( \theta -  \alpha)  + cos( \theta +  \alpha )}  \\  \\  =  >  \frac{sin \theta.cos \alpha  + cos \theta.sin \alpha  + cos \theta.cos \alpha  + sin \theta.sin \alpha }{{sin \theta.cos \alpha   - cos \theta.sin \alpha  + cos \theta.cos \alpha   - sin \theta.sin \alpha } }  \\  \\  =  >  \frac{sin \alpha(cos \theta + sin \theta) +  cos \alpha (cos \theta + sin \theta)  }{{sin \alpha(cos \theta + sin \theta) +  cos \alpha (cos \theta + sin \theta) }}

(Sin ∅ + Cos ∅)(Sin @ + Cos @)/ (Sin ∅ + Cos ∅) ( Cos @ - Sin@)

(Sin ∅ + Cos ∅) gets cancelled ! Hence final answer :

{\huge{\bold{\frac{Sin@ + Cos@}{Cos@ - Sin@)}}}}

Hence Proved

{\bold{Identities \:used \:}} →:

→ Sin ( A + B ) = SinA.CosB + CosA.SinB

→ Sin ( A - B ) = SinA.CosB - CosA.SinB

→ Cos ( A + B ) = CosA.CosB - SinA.SinB

→ Cos ( A - B ) = CosA.CosB + SinA.SinB

___________________________________________________

Similar questions