Math, asked by sanjana777777, 11 months ago

please help me to solve this question​

Attachments:

Answers

Answered by subid77
3

Here u mate your answer

Attachments:
Answered by Anonymous
50

Question :

If tanθ+secθ=l,

then prove that secθ =\dfrac{l{}^{2}+1}{2l}

Formulas :

  • sin²A + cos²A = 1
  • sec²A - tan²A = 1
  • cosec²A - cot²A = 1

Solution :

we have to prove that secθ =\dfrac{l{}^{2}+1}{2l}

Given :

 \tan( \theta)  +  \sec( \theta)  = l

 \implies \:  \tan(  \theta)  = l -  \sec( \theta)

Now squaring on both sides

 \implies  \tan {}^{2} ( \theta)  = (l -  \sec( \theta) ) {}^{2}

 \implies \:  \tan {}^{2} ( \theta)  = l {}^{2}  +  \sec( \theta)  - 2l \sec {}^{2} ( \theta)

 \implies \:  \sec {}^{2} ( \theta)  - 1 = l {}^{2}  +  \sec {}^{2} ( \theta) - 2l \sec( \theta)

 \implies \: l {}^{2}  - 2l \sec( \theta)  + 1 = 0

 \implies \: l {}^{2}  + 1 = 2l \sec( \theta)

  \implies \:  \sec( \theta) =   \dfrac{l {}^{2} + 1 }{2l}

\huge{\bold{ Hence\: Proved}}

_________________

More Trigonometry Formulas

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)
Similar questions