please help me to solve this question
Answers
Answer:
• To Prove :
\dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) } = 1 + \sec(A) \csc(A)
1−cot(A)
tan(A)
+
1−tan(A)
cot(A)
=1+sec(A)csc(A)
• Proof :
\leadsto\dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) }⇝
1−cot(A)
tan(A)
+
1−tan(A)
cot(A)
⠀⠀⠀⠀⋆ tan(A) = sin(A) / cos(A)
⠀⠀⠀⠀⋆ cot(A) = cos(A) / sin(A)
\leadsto\dfrac{ \frac{ \sin(A) }{ \cos(A) } }{1 - \frac{ \cos(A) }{ \sin(A) } } + \dfrac{ \frac{ \cos(A) }{ \sin(A) } }{1 - \frac{ \sin(A) }{ \cos(A) } }⇝
1−
sin(A)
cos(A)
cos(A)
sin(A)
+
1−
cos(A)
sin(A)
sin(A)
cos(A)
\leadsto\dfrac{ \frac{ \sin(A) }{ \cos(A) } }{\frac{ \sin(A) - \cos(A) }{ \sin(A) } } + \dfrac{ \frac{ \cos(A) }{ \sin(A) } }{\frac{ \cos(A) - \sin(A) }{ \cos(A) } }⇝
sin(A)
sin(A)−cos(A)
cos(A)
sin(A)
+
cos(A)
cos(A)−sin(A)
sin(A)
cos(A)
\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A) - \cos(A)) } + \dfrac{ \cos ^{2} (A) }{ \sin(A)( \cos(A) - \sin(A) )}⇝
cos(A)(sin(A)−cos(A))
sin
2
(A)
+
sin(A)(cos(A)−sin(A))
cos
2
(A)
⠀⠀⠀⠀⋆ Taking Negative Common
\leadsto\dfrac{ \sin^{2} (A) }{ \cos(A)( \sin(A) - \cos(A)) } - \dfrac{ \cos ^{2} (A) }{ \sin(A)( \sin(A) - \cos(A) )}⇝
cos(A)(sin(A)−cos(A))
sin
2
(A)
−
sin(A)(sin(A)−cos(A))
cos
2
(A)
\leadsto \dfrac{1}{( \sin(A) - \cos(A))} \bigg(\dfrac{ \sin^{2} (A) }{ \cos(A) } - \dfrac{ \cos ^{2} (A) }{ \sin(A)} \bigg)⇝
(sin(A)−cos(A))
1
(
cos(A)
sin
2
(A)
−
sin(A)
cos
2
(A)
)
\leadsto \dfrac{1}{( \sin(A) - \cos(A))} \bigg(\dfrac{ \sin^{3} (A) - \cos ^{3} (A) }{ \cos(A)\sin(A) } \bigg)⇝
(sin(A)−cos(A))
1
(
cos(A)sin(A)
sin
3
(A)−cos
3
(A)
)
⠀⠀⠀⠀⋆ (a³ - b³) = (a - b)(a² + b² + ab)
\leadsto \dfrac{1}{ \cancel{( \sin(A) - \cos(A))}} \times \dfrac{ \cancel{(\sin(A) - \cos(A))}(\sin^{2} (A) + \cos ^{2} (A) + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }⇝
(sin(A)−cos(A))
1
×
cos(A)sin(A)
(sin(A)−cos(A))
(sin
2
(A)+cos
2
(A)+sin(A)cos(A))
\leadsto \dfrac{(\sin^{2} (A) + \cos ^{2} (A) + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }⇝
cos(A)sin(A)
(sin
2
(A)+cos
2
(A)+sin(A)cos(A))
⠀⠀⠀⠀⋆ (sin²A + cos²A) = 1
\leadsto \dfrac{(1 + \sin(A) \cos(A)) }{ \cos(A)\sin(A) }⇝
cos(A)sin(A)
(1+sin(A)cos(A))
\leadsto \dfrac{1}{ \cos(A)\sin(A) } + \cancel\dfrac{\sin(A) \cos(A) }{ \cos(A)\sin(A) }⇝
cos(A)sin(A)
1
+
cos(A)sin(A)
sin(A)cos(A)
\leadsto \dfrac{1}{ \cos(A)\sin(A) } + 1⇝
cos(A)sin(A)
1
+1
⠀⠀⠀⠀⋆ 1 / cos(A) = sec(A)
⠀⠀⠀⠀⋆ 1 / sin(A) = cosec(A)
\leadsto \large1 + \sec(A) \csc(A)⇝1+sec(A)csc(A)
⠀
\therefore \boxed{ \rm \dfrac{ \tan(A) }{1 - \cot(A) } + \dfrac{ \cot(A) }{1 - \tan(A) } = 1 + \sec(A) \csc(A) }∴
1−cot(A)
tan(A)
+
1−tan(A)
cot(A)
=1+sec(A)csc(A)
sorry it is too long