Math, asked by chaksharsai, 1 month ago

Please help me to solve this question
Sum from algebra, class 9​

Attachments:

Answers

Answered by Salmonpanna2022
1

Step-by-step explanation:

Hello user,☺

Given that:

 \tt \red{ \bigg(x +  \frac{1}{x} \bigg) ^{2} } = 3 \\  \\ </u><u>[tex] </u></p><h2><u>To </u><u>find</u><u>:</u></h2><p></p><p><u>[tex] \tt \blue{the \: valve \: of \:  {x}^{3} +  \frac{1}{ {x}^{3} }  } \\  \\

Solution:

We have,

 \tt \red{ \bigg(x +  \frac{1}{x} \bigg) ^{2} } = 3 \\  \\ </u></p><p><u>[tex] \tt \red{ \bigg(x +  \frac{1}{x} \bigg) ^{2} } = 3 \\  \\

⟹ \tt \red{x +  \frac{1}{x}  =  \sqrt{3} } \\  \\

Now,

 \tt \blue{{x}^{3} +  \frac{1}{ {x}^{3} }} \\  \\ [\tex]</p><p>[tex] =  \tt \blue{\bigg(x +  \frac{1}{x}  \bigg) ^{2} - 3x \times  \frac{1}{x}  \bigg (x +  \frac{1}{x}  \bigg)} \\  \\

 \bigg [∴ {x}^{3} +  {y}^{3}   = (x + y {)}^{2}  - 3xy(x + y),where \: x = x,y =  \frac{1}{x} \bigg ] \\  \\

 =  \tt \blue{( \sqrt{3}  {)}^{3}  - 3 \sqrt{3} } \\  \\

 =  \tt \blue{3 \sqrt{3}  - 3 \sqrt{3} } \\   \\

 =  \tt \blue0 \\  \\

Therefore, according to the question we find the value of

 \tt \blue{{x}^{3} +  \frac{1}{ {x}^{3} }} = 0 \: ans. \\  \\

Similar questions