Please HELP ME TO SOLVE THIS
sinA-2sin^3A/2cos^3A-cosA = tanA
Root1-sinA/1+sinA = cosA/1+sinA
PLEASE ANSWER CORRECTLY
Answers
Answered by
2
Answer:
{sinA(1-2sin²A) }/{cosA(2cos²A-1)}=tanA(Taking sinA and Cos A as common...
--->tanA[1-2(1-cos²A)/(2cos²A-1)]=tanA
==tanA[1-2+2cos²A/2cos²A-1]=tanA
===tan A[2cos²A-1/2cos²A-1]=tanA
== therefore---TanA=rhs(TanA)
== hence proved
√1-sinA/√1+sinA===By multiplying both by √1+sinA...
√1-sin²A/√(1+sinA)²===√cos²A/√(1+sin²A)²===
Now open the Roots
==>>cosA/1+sinA=Rhs(cosA/1+sinA)
Answered by
0
Question 1
Question 2
Similar questions