Math, asked by khushi63759, 2 months ago

please help me to solveit​

Attachments:

Answers

Answered by sreeragsunil1
1

Answer:

This is the answer of your question.

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

If a function satisfies the relation

\rm :\longmapsto\:2f(x) + f\bigg[\dfrac{1}{x} \bigg] =  -  \: x \:  \:  \: x \ne \: 0

then f(2) equals

 \purple{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:2f(x) + f\bigg[\dfrac{1}{x} \bigg] =  -  \: x -  -  - (1)

Now, change

\red{ \boxed{ \sf{  \: \:x \:  \to \:  \frac{1}{x} \:  \: we \: get \:  \: }}}

\rm :\longmapsto\:2f\bigg[\dfrac{1}{x} \bigg] + f(x) =  -  \: \dfrac{1}{x}  -  -  -  - (2)

On multiply equation (1) by 2, we get

\rm :\longmapsto\:4f(x) +2 f\bigg[\dfrac{1}{x} \bigg] =  -  \:2 x -  -  - (3)

On Subtracting, equation (2) from (3), we get

\rm :\longmapsto\:3f(x)  =\dfrac{1}{x}   -  \:2 x

\rm :\longmapsto\:3f(x)  =\dfrac{1 - 2 {x}^{2} }{x}

\rm :\longmapsto\:f(x)  =\dfrac{1 - 2 {x}^{2} }{3x}

Hence, On substituting x = 2, we get

\rm :\longmapsto\:f(2)  =\dfrac{1 - 2 {(2)}^{2} }{3(2)}

\rm :\longmapsto\:f(2)  =\dfrac{1 - 8 }{6}

\bf :\longmapsto\:f(2)  =\dfrac{ - 7 }{6}

Similar questions