Math, asked by sameerfayaz1028, 19 days ago

please help me to solving this question​

Attachments:

Answers

Answered by StormEyes
9

Solution!!

\sf \displaystyle \lim_{\sf x\to 0 }\dfrac{\sqrt{1+3x}-\sqrt{1-3x}}{x}

Multiply the fraction.

\sf \implies \displaystyle \lim_{\sf x\to 0}\dfrac{\sqrt{1+3x}-\sqrt{1-3x}}{x}\times \dfrac{\sqrt{1+3x}+\sqrt{1-3x}}{\sqrt{1+3x}+\sqrt{1-3x}}

Multiply the numerators and denominators separately.

\sf \implies \displaystyle \lim_{\sf x\to 0}\dfrac{(\sqrt{1+3x}-\sqrt{1-3x})(\sqrt{1+3x}+\sqrt{1-3x})}{x(\sqrt{1+3x}+\sqrt{1-3x})}

Use (a - b)(a + b) = a² - b² to simplify the product.

\sf \implies \displaystyle \lim_{\sf x\to 0}\dfrac{1+3x-1+3x}{x(\sqrt{1+3x}+\sqrt{1-3x})}

Add and subtract the like terms.

\sf \implies \displaystyle \lim_{\sf x\to 0}\dfrac{6x}{x(\sqrt{1+3x}+\sqrt{1-3x})}

Reduce the fraction with x.

\sf \implies \displaystyle \lim_{\sf x\to 0}\dfrac{6}{\sqrt{1+3x}+\sqrt{1-3x}}

Evaluate the limit.

\sf \implies \dfrac{6}{\sqrt{1+3\times 0}+\sqrt{1-3\times 0}}

Calculate the value.

\sf \implies \dfrac{6}{\sqrt{1+0}+\sqrt{1-0}}

\sf \implies \dfrac{6}{1+1}

\sf \implies 3

Option (a) is correct.

Answered by MathTeacher029
2

correct option is : (a) 3

Similar questions