Math, asked by sumitjnp206, 4 months ago

please help me today is my exam​

Attachments:

Answers

Answered by Anonymous
3

Question 7 :

Given :

  • Principal = Rs.4,000
  • Rate = 2% per annum
  • Time = 5 years

To Find :

The Simple Interest.

Solution :

Analysis :

By using the formula for the simple interest we can find the answer.

Required Formula :

:\normalsize\boxed{\bf Simple\ Interest=\dfrac{P\times R\times T }{100}}

where,

  • P = Principal
  • R = Rate
  • T = Time

Explanation :

We know that if we are given the Principal, rate and time and is asked to find the simple interest then our required formula is,

\normalsize\boxed{\bf Simple\ Interest=\dfrac{P\times R\times T }{100}}

where,

  • P = Rs.4,000
  • R = 2%
  • T = 5 years

Using the required formula and substituting the required values,

 \\ :\implies\normalsize\sf Simple\ Interest=\dfrac{4000\times 2\times 5}{100}

 \\ :\implies\normalsize\sf Simple\ Interest=\dfrac{40\cancel{00}\times 2\times 5}{1\cancel{00}}

 \\ :\implies\normalsize\sf Simple\ Interest=\dfrac{40\times 2\times 5}{1}

 \\ :\implies\normalsize\sf Simple\ Interest=40\times 2\times 5

 \\ :\implies\normalsize\sf Simple\ Interest=40\times10

 \\ \normalsize\therefore\boxed{\bf Simple\ Interest=Rs.400.}

Simple Interest is Rs.400.

_______________________________________

Question 8 :

Given :

 \\ :\normalsize\boxed{\bf\dfrac{3x-2}{2x+1}=\dfrac{4}{5}}

To Find :

The value of x.

Solution :

Analysis :

Here we have to evaluate as per the given information and find out the value of x.

Explanation :

 \\ :\implies\normalsize\sf\dfrac{3x-2}{2x+1}=\dfrac{4}{5}

By cross multiplying,

 \\ :\implies\normalsize\sf5(3x-2)=4(2x+1)

Expanding the brackets,

 \\ :\implies\normalsize\sf15x-10=8x+4

Transposing the 8x in LHS and -10 in RHS,

 \\ :\implies\normalsize\sf15x-8x=4+10

Adding up the numbers,

 \\ :\implies\normalsize\sf7x=14

After Evaluation,

 \\ :\implies\normalsize\sf x=\dfrac{14}{7}

 \\ :\implies\normalsize\sf x=\cancel{\dfrac{14}{7}}

 \\ \normalsize\therefore\boxed{\bf x=2.}

The value of x is 2.

Similar questions