Math, asked by pitambayadav2061, 2 months ago

please help me


trigonometry question of grade 9 optional mathematics from Nepal ​

Attachments:

Answers

Answered by shettyakshata2815
1

Answer:

it's a trigonometry lesson right

Answered by mathdude500
1

Given Question :-

Prove that

\bf \: \dfrac{1 +  {tan}^{2} \alpha  \:  {cosec}^{2} \beta   }{1 +  {tan}^{2} \alpha  \:  {cosec}^{2} \theta}  = \dfrac{1 +  {sin}^{2} \alpha  \:  {cosec}^{2} \beta   }{1 +  {sin}^{2} \alpha  \:  {cosec}^{2} \theta}

\large\underline{\bold{Solution :-  }}

Identities Used :-

 (1). \: \boxed{ \tt \:  {sec}^{2}x -  {tan}^{2}x = 1}

 (2). \: \boxed{ \tt \: {cosec}^{2}x  -  {cot}^{2}x = 1}

 (3). \: \boxed{ \tt \:cosx \:  \times \: secx = 1  }

CALCULATION :-

  • Consider LHS

\rm :\longmapsto\:\dfrac{1 +  {tan}^{2} \alpha  \:  {cosec}^{2} \beta   }{1 +  {tan}^{2} \alpha  \:  {cosec}^{2} \theta}

\rm :\longmapsto\:\dfrac{ {sec}^{2} \alpha  -  {tan}^{2} \alpha    +  {tan}^{2} \alpha  \:  {cosec}^{2} \beta }{{sec}^{2} \alpha  -  {tan}^{2} \alpha   +  {tan}^{2} \alpha  \:  {cosec}^{2}\theta}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \boxed{ \tt \:  \because \:  {sec}^{2} \alpha  -  {tan}^{2} \alpha  = 1}

\rm :\longmapsto\:\dfrac{{sec}^{2} \alpha   +   {tan}^{2} \alpha( {cosec}^{2} \beta  - 1)}{{sec}^{2} \alpha   +   {tan}^{2} \alpha( {cosec}^{2}\theta  - 1)}

\rm :\longmapsto\:\dfrac{{sec}^{2} \alpha   +   {tan}^{2} \alpha \:  {cot}^{2} \beta}{{sec}^{2} \alpha   +   {tan}^{2} \alpha \:  {cot}^{2}\theta}

\rm :\longmapsto\:\dfrac{\dfrac{1}{ {cos}^{2} \alpha  }  + \dfrac{ {sin}^{2} \alpha  }{ {cos}^{2} \alpha }  \:  {cot}^{2} \beta  }{\dfrac{1}{ {cos}^{2} \alpha  }  + \dfrac{ {sin}^{2} \alpha  }{ {cos}^{2} \alpha }  \:  {cot}^{2}\theta}

\rm :\longmapsto\:\dfrac{1 +  {sin}^{2} \alpha  \:  {cosec}^{2} \beta }{1 +  {sin}^{2} \alpha  \:  {cosec}^{2}\theta}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions