please help me
what is the next step
i don't known
please solve the problem
Attachments:
Answers
Answered by
39
Qᴜᴇsᴛɪᴏɴ :-
Prove :- cosA/(1 - tanA) + sinA/(1-cotA) = cosA + sinA
Sᴏʟᴜᴛɪᴏɴ :-
Solving LHS, (Like You did by using tanA = (sinA/cosA) & cotA = (cosA/sinA) in denominator , we get,
→ cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)
→ cosA /(cosA - sinA)/cosA + sinA/(sinA - cosA) / sinA
Now, using a/(b/c) = a * (c/b) , we get, cosA & sinA will come in Numerator, so we get ,
→ cos²A/ (cosA - sinA) + sin²A / (sinA - cosA)
Now, taking (-1) common from second part Denominator , we get,
→ cos²A/ (cos A - sin A) - sin²A / (cosA - sinA)
Now, taking LCM ,
→ (cos²A - sin²A) / (cos A - sin A)
using (a² - b²) = (a + b)(a - b) in Numerator now,
→ (cosA - sinA)(cosA + sinA) / (cosA - sinA)
(cosA - sinA) will be cancel now,
→ cos A + sin A = RHS = Proved.
Answered by
17
We know that,
Hence proved!
Similar questions