Math, asked by junaidhkhan, 10 months ago

please help me
what is the next step
i don't known
please solve the problem

Attachments:

Answers

Answered by RvChaudharY50
39

Qᴜᴇsᴛɪᴏɴ :-

Prove :- cosA/(1 - tanA) + sinA/(1-cotA) = cosA + sinA

Sᴏʟᴜᴛɪᴏɴ :-

Solving LHS, (Like You did by using tanA = (sinA/cosA) & cotA = (cosA/sinA) in denominator , we get,

→ cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)

→ cosA /(cosA - sinA)/cosA + sinA/(sinA - cosA) / sinA

Now, using a/(b/c) = a * (c/b) , we get, cosA & sinA will come in Numerator, so we get ,

→ cos²A/ (cosA - sinA) + sin²A / (sinA - cosA)

Now, taking (-1) common from second part Denominator , we get,

→ cos²A/ (cos A - sin A) - sin²A / (cosA - sinA)

Now, taking LCM ,

→ (cos²A - sin²A) / (cos A - sin A)

using (a² - b²) = (a + b)(a - b) in Numerator now,

→ (cosA - sinA)(cosA + sinA) / (cosA - sinA)

(cosA - sinA) will be cancel now,

cos A + sin A = RHS = Proved.

Answered by Anonymous
17

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

   \star {\sf{   \: \frac{cosA}{ 1 - tan A}   +  \frac{sinA}{1 - cotA} }} \\  \\

{\bf{\blue{\underline{Now:}}}}

We know that,

   :  {\star{\boxed {\sf{  \:  tanA =  \frac{sinA}{cosA} }} \:  \:  \:  \:  \star{\boxed{  \sf{ \: cotA =  \frac{cosA}{sinA} }}}}}

   :  \implies{\sf{   \frac{cosA}{1 -  \frac{sinA}{cosA} } +  \frac{sinA}{1 -  \frac{cosA}{sinA} }   }} \\  \\

   :  \implies{\sf{   \frac{cosA}{  \frac{cosA - sinA}{cosA} } +  \frac{sinA}{  \frac{sinA - cosA}{sinA} }   }} \\  \\

:  \implies{\sf{   \frac{cos ^{2} A  }{  {cosA - sinA} } +  \frac{sin ^{2} A  }{  {sinA - cosA}}   }} \\  \\  </p><p></p><p>

   :  \implies{\sf{   \frac{cos ^{2} A  }{  {cosA - sinA} }  -   \frac{sin ^{2} A  }{  {cosA - sinA}}   }} \\  \\

   :  \implies{\sf{   \frac{cos ^{2} A  -  sin ^{2} A }{  {cosA - sinA} }     }} \\  \\

     {\star{\boxed {\sf{\purple{ \: ( {x}^{2}   -  {y}^{2} )= (x + y)(x - y) }}}}}\\ \\

   :  \implies{\sf{   \frac{(cos  A  -  sin A )(cos  A   +   sin A )}{  {cosA - sinA} }     }} \\  \\

   :  \implies{\sf{   cos  A   +   sin A   }} \\  \\

Hence proved!

Similar questions