Please help me with 6th question
Attachments:
Answers
Answered by
2
Here is your answer :
a - b = 7
a = 7 + b
( 7 + b ) × b = 18
7b + b^2 = 18
b^2 + 7b - 18 = 0
b^2 + 9b - 2b - 18 = 0
b ( b + 9 ) - 2 ( b + 9 ) = 0
( b - 2 ) ( b + 9 ) = 0
b = 2
a = 7 + b
a = 7 + 2
a = 9
So a + b = 9 + 2 = 11
Hope it helps you.
a - b = 7
a = 7 + b
( 7 + b ) × b = 18
7b + b^2 = 18
b^2 + 7b - 18 = 0
b^2 + 9b - 2b - 18 = 0
b ( b + 9 ) - 2 ( b + 9 ) = 0
( b - 2 ) ( b + 9 ) = 0
b = 2
a = 7 + b
a = 7 + 2
a = 9
So a + b = 9 + 2 = 11
Hope it helps you.
udit43:
Your welcome
Answered by
2
Given a - b = 7 and ab = 18.
On squaring both sides, we get
= > (a - b)^2 = (7)^2
= > a^2 + b^2 - 2ab = 49
= > a^2 + b^2 - 2(18) = 49
= > a^2 + b^2 - 36 = 49
= > a^2 + b^2 = 49 + 36
= > a^2 + b^2 = 85.
We know that a^2 + b^2 = (a + b)^2 - 2ab
= > 85 = (a + b)^2 - 2(18)
= > 85 = (a + b)^2 - 36
= > 85 + 36 = (a + b)^2
= > 121 = (a + b)^2
= > a + b = 11.
Therefore the value of a + b = 11.
Hope this helps!
On squaring both sides, we get
= > (a - b)^2 = (7)^2
= > a^2 + b^2 - 2ab = 49
= > a^2 + b^2 - 2(18) = 49
= > a^2 + b^2 - 36 = 49
= > a^2 + b^2 = 49 + 36
= > a^2 + b^2 = 85.
We know that a^2 + b^2 = (a + b)^2 - 2ab
= > 85 = (a + b)^2 - 2(18)
= > 85 = (a + b)^2 - 36
= > 85 + 36 = (a + b)^2
= > 121 = (a + b)^2
= > a + b = 11.
Therefore the value of a + b = 11.
Hope this helps!
Similar questions