Math, asked by Swathi2001, 1 year ago

Please help me with question 2

Attachments:

Swathi2001: Sorry
I didn’t understand

Answers

Answered by guptaramanand68
1

I= \int_{-1}^{1} \log \bigg({\frac{3-x}{3+x}\bigg)} dx \:  \:  \:  \: (1) \\


There is a well known property of definite integration which is extremely useful here,

\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \\

We will use this property in the given Integral.

Therefore,

I = \int_{-1}^{1} \log\bigg(\frac{3-(-1+1-x)}{3+(-1+1-x)}\bigg) dx  \\ I=\int_{-1}^{1} \log\bigg(\frac{3+x}{3-x}\bigg) dx  \:   \:  \:  \: \:(2)
Add (1) and (2)


2I = \int_{-1}^{1} \log\bigg(\frac{3-x}{3+x}\bigg) + \log\bigg(\frac{3+x}{3-x}\bigg) dx<br /> \\ <br />2I = \int_{-1}^{1} \log\bigg(\frac{3-x}{3+x} × \frac{3+x}{3-x}\bigg) dx \\ 2I=\int_{-1}^{1} \log(1) dx \\ 2I = \int_{-1}^{1} 0 \:  dx \\ <br />2I = 0 \\ <br />I = 0  \\ <br />\text{therefore,}  \\ \boxed{\int_{-1}^{1} \log\bigg(\frac{3-x}{3+x}\bigg) dx = 0} \\
Similar questions