Math, asked by askmekharabe, 11 months ago

Please help me with question no 24

Attachments:

Answers

Answered by rishu6845
6

To prove ---->

 \dfrac{ \sqrt{7} }{ \sqrt{16 \:  + 6 \sqrt{7} } \:  \:  -   \:  \sqrt{16 \:  -  \: 6 \sqrt{7} } } \: is \: rational

Concept used ---->

1)

\ ( \: a \:  +  \: b \: ) ^{2}  \:  =  \:  {a}^{2}  \:  +  \:  {b}^{2} \:   + 2 \: a \: b

2)

\ (\:a\: - \:b\:)^{2}\:=\:{a}^{2}+\:{b}^{2}\:-2\:a\:b

Solution----->

now \\ 16 \:  +  \: 6 \sqrt{7}  \:  = 9 \:  +  \: 7 \:  +  \: 2 \: ( \: 3 \: ) \: ( \:  \sqrt{7} \: ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \: ( \: 3 \: ) ^{2}  \:  +  \: ( \sqrt{7}  \: )^{2} \:  + 2 \: ( \: 3 \: ) \: ( \:  \sqrt{7}   \: ) \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \: ( \: 3 \:  +  \sqrt{7} \:) ^{2}

now \\ 16 \:  -  \: 6 \sqrt{7}  \:  =  \: 9 \:  +  \: 7 \:  -  \: 2 \: ( \: 3 \: ) \: ( \sqrt{7} ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {( \: 3 \: )}^{2} \:  +  \: ( \:  \sqrt{7} \: ) ^{2} \:  -  \: 2 \: ( \: 3 \: ) \: ( \:  \sqrt{7} \: ) \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   {( \:3 \:  -  \:  \sqrt{7} \: )  }^{2}

now \: returning \: to \: origianl \: problem \\  \frac{ \sqrt{7} }{ \sqrt{16 \:  +  \: 6 \sqrt{7} } \:  -  \sqrt{16 \:  -  \: 6 \sqrt{7} }  } \\  =  >  \dfrac{ \sqrt{7} }{ \sqrt{( \: 3 \:  +  \:  \sqrt{7} \: )^{2}  } \:  -  \:  \sqrt{( \: 3 \:  -  \:  \sqrt{7} \: ) ^{2}  }  } \\   =  > \dfrac{ \sqrt{7} }{( \: 3 \:  +  \:  \sqrt{7} \: ) \:  -  \: ( \: 3 \:  -  \:  \sqrt{7} \: )  } \\  =  >  \dfrac{ \sqrt{7} }{3 \:  +  \:  \sqrt{7} \:  -  \: 3 \:  +  \:  \sqrt{7}  } \\  + 3 \: and \:  - 3 \: cancel \: out \: each \: other \: in \: denominator \:and \: we \: get \\  =  >  \dfrac{ \sqrt{7} }{2 \:  \sqrt{7} } \\  \sqrt{7}  \:i s \:cancel \: out \: from \: numerator \: and \: denominator \: and \: we \: get   \\  =  >  \dfrac{1}{2}  \\ which \:is \: a \: rational \: number

Answered by Anonymous
0

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions