Math, asked by patelaayushi2624, 1 month ago

please help me with question of integrals.​

Attachments:

Answers

Answered by santoshpatil11180
0

Answer:

(d) is a right ans

please make brainlyest ans

Answered by mathdude500
4

\large\underline{\sf{Given \:Question - }}

 \sf \: \displaystyle\int_0^3\rm  \frac{3x + 1}{ {x}^{2}  + 9}  \: dx \:  =

 \:  \:  \:  \:  \rm \:  \: (a). \:  \: \: log\bigg[2\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{12}

 \:  \:  \:  \:  \rm \:  \: (b). \:  \: \: log\bigg[2\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{3}

 \:  \:  \:  \:  \rm \:  \: (c). \:  \: \: log\bigg[\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{12}

 \:  \:  \:  \:  \rm \:  \: (d). \:  \: \: log\bigg[2\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{6}

 \red{\large\underline{\sf{Solution-}}}

Given integral is

\rm :\longmapsto\: \: \displaystyle\int_0^3\rm  \frac{3x + 1}{ {x}^{2}  + 9}  \: dx \:

can be rewritten as

\rm \:  = \: \: \displaystyle\int_0^3\rm  \frac{3x}{ {x}^{2}  + 9}  \: dx \:  + \displaystyle\int_0^3\rm  \frac{1}{ {x}^{2}  + 9}  \: dx

can be further rewritten as

\rm \:  = \:\dfrac{3}{2}  \: \displaystyle\int_0^3\rm  \frac{2x}{ {x}^{2}  + 9}  \: dx \:  + \displaystyle\int_0^3\rm  \frac{1}{ {x}^{2}  +  {3}^{2} }  \: dx

We know,

 \boxed{ \bf{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c}}

and

 \boxed{ \bf{ \: \displaystyle\int\rm  \frac{f'(x)}{f(x)} dx = logf(x) + c}}

So, using these results, we get

\rm \:  =  \:\dfrac{3}{2} \bigg[log( {x}^{2}  + 9)\bigg]_0^3 \:   + \dfrac{1}{3}\bigg[ {tan}^{ - 1}  \dfrac{x}{3}\bigg]_0^3

\rm \:  =  \:\dfrac{3}{2} \bigg[log( 9  + 9) - log9\bigg] \:   + \dfrac{1}{3}\bigg[ {tan}^{ - 1}  \dfrac{3}{3} -  {tan}^{ - 1} 0\bigg]

\rm \:  =  \:\dfrac{3}{2} \bigg[log(18) - log9\bigg] \:   + \dfrac{1}{3}\bigg[ {tan}^{ - 1}  1 -  0\bigg]

We know,

 \boxed{ \bf{ \:  log(x)  -  log(y) =  log\bigg( \frac{x}{y}\bigg) }}

So, using this,

\rm \:  =  \:\dfrac{3}{2} \bigg[log \dfrac{18}{9} \bigg] \:   + \dfrac{1}{3}\bigg[  \dfrac{\pi}{4} \bigg]

\rm \:  =  \:\dfrac{3}{2} \bigg[log 2 \bigg] \:   +   \dfrac{\pi}{12}

We know,

 \boxed{ \bf{ \: y log(x) =  log( {x}^{y} )}}

So, using this result

\rm \:  =  \: log\bigg[ 2 \bigg]^{\dfrac{3}{2}}  \:   +   \dfrac{\pi}{12}

\rm \:  =  \: log\bigg[  \sqrt{2}  \bigg]^{3}  \:   +   \dfrac{\pi}{12}

\rm \:  =  \: log\bigg[2\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{12}

Therefore,

 \red{\rm :\longmapsto\: \: \displaystyle\int_0^3\rm  \frac{3x + 1}{ {x}^{2}  + 9}  \: dx \:  =  \: \: log\bigg[2\sqrt{2}  \bigg]  \:   +   \dfrac{\pi}{12} }

  • Hence, Option (a) is correct.

Additional Information :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Similar questions