Math, asked by preetimcpi, 1 year ago

Please help me with the 9th qn :)

Attachments:

Answers

Answered by Avengers00
7
\underline{\underline{\Huge{\textbf{Question}}}}

\sf\textsf{Prove that}\\\large{\mathsf{\dfrac{\left(a^{p+q}\right)^{2}\, \left(a^{q+r}\right)^{2}\, \left(a^{r+p}\right)^{2}}{\left(a^{p}\cdot a^{q}\cdot a^{r}\right)^{4}}}}

\\



\underline{\underline{\Huge{\textbf{Solution}}}}

\underline{\LARGE{\textsf{Step-1:}}}

\sf\textsf{Consider LHS of Eq. [A]}

\Large{\underline{\textbf{LHS \: =}}}

\mathsf{\dfrac{\left(a^{p+q}\right)^{2}\, \left(a^{q+r}\right)^{2}\, \left(a^{r+p}\right)^{2}}{\left(a^{p}\cdot a^{q}\cdot a^{r}\right)^{4}}} ———[A]

\\



\underline{\LARGE{\textsf{Step-2:}}}

\sf\textsf{Expand each term of Numerator of [A] using the Identity}

\qquad\LARGE{\boxed{\quad\bigstar\quad \mathbf{(a^{m})^{n}= a^{mn}\quad}}}

\begin{aligned}<br /><br />\sf \left(a^{p+q}\right)^{2}\, &amp; = \sf a^{2(p+q)}&amp; \implies \sf a^{2p+2q} \\\\\ \sf \left(a^{q+r}\right)^{2}\, &amp; = \sf a^{2(q+r)}&amp;\implies \sf a^{2q+2r} \\ \\ \sf \left(a^{r+p}\right)^{2}\, &amp;= \sf a^{2(r+p)}&amp;\implies \sf a^{2r+2p}\\\end{aligned}

\\



\underline{\LARGE{\textsf{Step-3:}}}

\sf\textsf{Substitute the expanded terms in [A]}

\implies \mathsf{\dfrac{a^{2p+2q}\cdot a^{2q+2r}\cdot a^{2r+2p}}{\left(a^{p}\cdot a^{q}\cdot a^{r}\right)^{4}}} ———[1]

\\



\underline{\LARGE{\textsf{Step-4:}}}

\sf\textsf{Expand each term of Numerator and Denominator}\\\sf\textsf{of Eq.[1] using the Identity}

\qquad\LARGE{\boxed{\quad\bigstar\quad \mathbf{a^{m} \cdot a^{n}= a^{m+n}\quad}}}

\begin{aligned} \sf a^{2p+2q}\cdot a^{2q+2r}\cdot a^{2r+2p} &amp;= \sf a^{2p+2q+2q+2r+2r+2p} \\ &amp;= \sf a^{4p+4q+4r}\\\\ \sf a^{p}\cdot a^{q}\cdot a^{r} &amp;= \sf a^{p+q+r}&amp;\end{aligned}

\\



\underline{\LARGE{\textsf{Step-5:}}}

\sf\textsf{Substitute the expanded terms in eq. [1]}

\implies \mathsf{\dfrac{a^{4p+4q+4r}}{\left(a^{p+q+r}\right)^{4}}} ———[2]

\\



\underline{\LARGE{\textsf{Step-6:}}}

\sf\textsf{Expand Denominator of Eq[2] using the Identity}

\qquad\LARGE{\boxed{\quad\bigstar\quad \mathbf{(a^{m})^{n}= a^{mn}\quad}}}

\begin{aligned}\sf \left(a^{p+q+r}\right)^{4} &amp;= \sf a^{4(p+q+r)}\\&amp;= \sf a^{4p+4q+4r}\end{aligned}

\\



\underline{\LARGE{\textsf{Step-7:}}}

\sf\textsf{Substitute the expanded terms in eq. [2]}

\implies \mathsf{\dfrac{\cancel{a^{4p+4q+4r}}}{\cancel{a^{4p+4q+4r}}}}

\implies 1

\Large{\underline{\textbf{=\: RHS}}}

\\

\\

\huge{\underline{\LARGE{\textbf{Hence\: Proved}}}}

preetimcpi: Thanks so much! :)
Avengers00: my pleasure (:
Similar questions