Math, asked by arnab2261, 1 year ago

Please help me with the question provided in the attachment .

No spams please. /(^_^) ​

Attachments:

Answers

Answered by Anonymous
12

Answer:

Given :

( x + 3 )( x + 4 )( x + 6 )( x + 7 ) = 1120

⇒ ( x + 3 )( x + 7 )( x + 4 )( x + 6 ) = 1120

⇒ ( x² + 3 x + 7 x + 21 )( x² + 4 x + 6 x + 24 ) = 1120

⇒ ( x² + 10 x + 21 )( x² + 10 x + 24 ) = 110

Let x² + 10 x be y .

⇒ ( y + 21 )( y + 24 ) = 1120

⇒ y² + 21 y + 24 y + 24×21 = 1120

⇒ y² + 45 y - 1120 + 504 = 0

⇒ y² + 45 y - 616 = 0

⇒ y² + 56 y - 11 y - 616 = 0

⇒ y ( y + 56 ) - 11 ( y + 56 ) = 0

⇒ ( y + 56 )( y - 11 ) = 0

Either y + 56 = 0 .

Or y - 11 = 0 .

When y + 56 = 0

x² + 10 x + 56 = 0

The quadratic equation will have no real roots because :

b² < 4 ac

⇒ 10² < 4×56

⇒ 100 < 224 .

Hence we neglect this value .

When y - 11 = 0

x² + 10 x - 11 = 0

⇒ x² + 11 x - x - 11 = 0

⇒ x ( x + 11 ) - 1 ( x + 11 ) = 0

⇒ ( x + 11 )( x - 1 ) = 0

Either x - 1 = 0

Or x + 11 = 0

Either x = 1 or x = - 11 .

Step-by-step explanation:

The given polynomial on the LHS of the equation is evidently an equation of degree 4 .

Hence substitution method is the quickest in this case .

If you are going for a competitive exam , then do it by trial and error method .

Simply taking out the factors of 1120 and then comparing both sides we can easily find the value of x .


sabrinanandini2: Awesome answer <3
Anonymous: :)
Answered by Anonymous
5

Answer:

Given :

( x + 3 )( x + 4 )( x + 6 )( x + 7 ) = 1120

⇒ ( x + 3 )( x + 7 )( x + 4 )( x + 6 ) = 1120

⇒ ( x² + 3 x + 7 x + 21 )( x² + 4 x + 6 x + 24 ) = 1120

⇒ ( x² + 10 x + 21 )( x² + 10 x + 24 ) = 110

Let x² + 10 x be y .

⇒ ( y + 21 )( y + 24 ) = 1120

⇒ y² + 21 y + 24 y + 24×21 = 1120

⇒ y² + 45 y - 1120 + 504 = 0

⇒ y² + 45 y - 616 = 0

⇒ y² + 56 y - 11 y - 616 = 0

⇒ y ( y + 56 ) - 11 ( y + 56 ) = 0

⇒ ( y + 56 )( y - 11 ) = 0

Either y + 56 = 0 .

Or y - 11 = 0 .

When y + 56 = 0

x² + 10 x + 56 = 0

The quadratic equation will have no real roots because :

b² < 4 ac

⇒ 10² < 4×56

⇒ 100 < 224 .

Hence we neglect this value .

When y - 11 = 0

x² + 10 x - 11 = 0

⇒ x² + 11 x - x - 11 = 0

⇒ x ( x + 11 ) - 1 ( x + 11 ) = 0

⇒ ( x + 11 )( x - 1 ) = 0

Either x - 1 = 0

Or x + 11 = 0

Either x = 1 or x = - 11 .

Similar questions