Math, asked by Pranahu, 10 months ago

Please help me with this

Attachments:

Answers

Answered by BrainlyIAS
23

Answer

\bullet \;\;\tt \log_{a^2}a.log_{b^2}b.log_{c^2}c=\dfrac{1}{8}

Given

\bullet \;\; \tt \log _{a^2}a.\log_{b^2}b.\log_{c^2}c

To Find

\bullet \tt \;\; \dfrac{1}{8}

Formula Used

\tt \bullet \;\; \log_xy=\dfrac{\log y}{\log x}\\\\\bullet \;\; \tt \log x^y=y.\log x

Solution

\tt LHS\\\\\implies \tt \log _{a^2}a.log_{b^2}b.log_{c^2}c\\\\\implies \tt \dfrac{\log {a}}{\log a^2}.\dfrac{\log b}{\log b^2}.\dfrac{\log c}{\log c^2}[By\ Formula\ 1]\\\\\implies \tt \dfrac{\log a}{2 \log a}.\dfrac{\log b}{2 \log b}.\dfrac{\log c}{2 \log c}[By\ Formula\ 2]\\\\\implies \tt \dfrac{\cancel{\log a}}{2\ \cancel{\log a}}.\dfrac{\cancel{\log b}}{2\  \cancel{\log b}}.\dfrac{\cancel{\log c}}{2\  \cancel{\log c}}\\\\\implies \tt \dfrac{1}{2}\times \dfrac{1}{2}\times \dfrac{1}{2}\\\\

\implies \bf \dfrac{1}{8}\\\\\implies \tt RHS

Hence Proved

Similar questions
Math, 5 months ago