Math, asked by urvashibaitha, 5 months ago

please help me with this ​

Attachments:

Answers

Answered by karmaan958
0

Step-by-step explanation:

(i)

(81/16)-¾

= (3/2)⁴ × -¾

= (3/2)-³

= (2/3)³

= (2×2×2/3×3×3)

= 8/27

The multiplicative inverse of 8/27 is 27/8.

(ii)

{(-3/2)-⁴}½

= {(2/-3)⁴}½

= {(2×2×2×2/(-3)×(-3)×(-3)×(-3))}½

= {16/81)½

= (4/9)² × ½

= 4/9

The multiplicative inverse of 4/9 is 9/4.

(iii)

(5/7)-² × (5/7)⁴ + (5/7)³

= (5/7)-²+⁴ + (5/7)³

= (5/7)² + 5/7)³

= 25/49 + 125/343

= 175/343 + 125/343

= 300/343

The multiplicative inverse of 300/343 is 343/300.

Answered by Anonymous
49

Corrected Question :

  • (i) {\sf{\bigg( \dfrac{18}{16}  {\bigg)}^{ \dfrac{ - 3}{4} } }}

  • (ii) {\sf{\bigg[\; \bigg( \dfrac{ - 3}{2}  {\bigg)}^{  - 4 }  {\bigg]\; }^{ \dfrac{  1}{2} }}}

  • (iii) {\sf{\bigg( \dfrac{5}{7}  {\bigg)}^{ - 2}  \times \bigg( \dfrac{5}{7}  {\bigg)}^{4}  + \bigg( \dfrac{5}{7}  {\bigg)}^{3} }}

\\

A N S W E R :

  • The multiplicative inverse of {\sf{\dfrac{8}{27}}}

  • The multiplicative inverse of {\sf{\dfrac{4}{9}}}

  • The multiplicative inverse of {\sf{\dfrac{300}{343}}}

\\

E X P L A N A T I O N :

\begin{gathered}\begin{gathered}\begin{gathered}\large{\underline {\underline {\sf(\:i \:)}}}\\\end{gathered}\end{gathered}\end{gathered}

  • {\sf{\bigg( \dfrac{18}{16}  {\bigg)}^{ \dfrac{ - 3}{4} } }}

{\sf{\bigg(\dfrac{3}{2}\bigg)^{4}\:\times\:-\:¾}}

{\sf{\bigg(\dfrac{3}{2}\bigg)^{- 3}}}

{\sf{\bigg(\dfrac{2}{3}\bigg)^{ 3}}}

{\sf{\bigg(\dfrac{2\:\times\:2\:\times\:2}{3\:\times\:3\:\times\:3}\bigg)}}

:\implies{\underline{\boxed{\frak{\purple{\dfrac{8}{27}}}}}}

{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{8}{27}} \: \sf{is} \: \bf{\dfrac{27}{8}}.}}

~~~~~~~~~~~~~~ _______________________

\begin{gathered}\begin{gathered}\begin{gathered}\large{\underline {\underline {\sf(\:ii \:)}}}\\\end{gathered}\end{gathered}\end{gathered}

  • {\sf{\bigg[\; \bigg( \dfrac{ - 3}{2}  {\bigg)}^{  - 4 }  {\bigg]\; }^{ \dfrac{  1}{2} }}}

{\sf{\bigg[\; \bigg( \dfrac{ 2}{-3}  {\bigg)}^{  4 }  {\bigg]\; }^{ \dfrac{ 1}{2} }}}

{\sf{\dfrac{\bigg[ \bigg(2\:\times\:2\:\times\:2\:\times\:2\bigg)\bigg]}{\bigg(-3\bigg)\:\times\; \bigg(-3\bigg)\; \:\times\; \bigg(-3\bigg)\; \:\times\; \bigg(-3\bigg)\bigg)\; \bigg]½}}}

{\sf{\bigg(\dfrac{16}{81}\bigg) \: \dfrac{1}{2}}}

{\sf{\bigg(\dfrac{4}{9}\bigg)^{2}\:\times\:\dfrac{1}{2}}}

:\implies{\underline{\boxed{\frak{\blue{\dfrac{4}{9}}}}}}

{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{4}{9}} \: \sf{is} \: \bf{\dfrac{9}{4}}.}}

~~~~~~~~~~~~~~ _______________________

\begin{gathered}\begin{gathered}\begin{gathered}\large{\underline {\underline {\sf(\:iii \:)}}}\\\end{gathered}\end{gathered}\end{gathered}

  • {\sf{\bigg( \dfrac{5}{7}  {\bigg)}^{ - 2}  \times \bigg( \dfrac{5}{7}  {\bigg)}^{4}  + \bigg( \dfrac{5}{7}  {\bigg)}^{3} }}

{\sf{\bigg(\dfrac{5}{7}\bigg)^{- 2}  \; {+}^{4} \; + \; \bigg(\dfrac{5}{7}\bigg)^3}}

{\sf{\bigg(\dfrac{5}{7}\bigg)^2 \: + \: \bigg(\dfrac{5}{7}\bigg)^3}}

{\sf{\dfrac{25}{49} \: + \: \dfrac{125}{343}}}

{\sf{\dfrac{175}{343} \: + \: \dfrac{125}{343}}}

:\implies{\underline{\boxed{\frak{\pink{\dfrac{300}{343}}}}}}

{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{300}{343}} \: \sf{is} \: \bf{\dfrac{343}{300}}.}}

\\

Hence,

  • \underline{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{8}{27}} \: \sf{is} \: \bf{\dfrac{27}{8}}.}}

  • \underline{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{4}{9}} \: \sf{is} \: \bf{\dfrac{9}{4}}.}}

  • \underline{\sf{The\: multiplicative\; inverse\:of \; \bf{\dfrac{300}{343}} \: \sf{is} \: \bf{\dfrac{343}{300}}.}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~ _______________________

Similar questions