Math, asked by hrishita23, 7 months ago

please help me with this problem

Attachments:

Answers

Answered by anindyaadhikari13
5

Given to evaluate:-

  •  \int \sin2x \cos3x \: dx

Solution:-

 \int \sin2x \cos3x \: dx

Using,

 \sin(t)  \cos(s)  =  \frac{1}{2} ( \sin(t + s)  + \sin(t - s) )

We get,

 =  \int \frac{1}{2} ( \sin(5x)  +  \sin( - x) ) \: dx

Now, using the identity,

 \sin( - x)  =  -  \sin(x)

We get,

 =  \int \frac{1}{2} ( \sin(5x)   -  \sin( x) ) \: dx

Using the property of integrals,

 \int a \times f(x) \:  dx = a \int f(x) \: dx,a \in  \R

We get,

 =  \frac{1}{2}  \int (\sin(5x)  -  \sin(x))  \: dx

Now, using the property of integrals,

 \int f(x) \pm g(x)  =  \int f(x) \: dx \pm \int g(x) \: dx

We get,

 =  \frac{1}{2} ( \int \sin(5x)   \: dx-   \int\sin(x)  \: dx)

Now, evaluate the indefinite integral,

 \frac{1}{2} ( -  \frac{ \cos(5x) }{5}   +  \cos(x) )

 =  -  \frac{ \cos(5x) }{10}   +  \frac{ \cos(x) }{2}

Now, add the constant of integration,

 =  -  \frac{ \cos(5x) }{10}   +  \frac{ \cos(x) }{2}  + C</p><p>,C \in \R

Answer:-

  •    -  \frac{ \cos(5x) }{10}   +  \frac{ \cos(x) }{2}  + C,C \in \R
Similar questions