Math, asked by saloniwagh17, 2 months ago

Please help me with this question

Attachments:

Answers

Answered by Anonymous
37

Answer:

{ \large{ \pmb{ \sf{Given... }}}}

  • A = 60°

  • B = 30°

 \large{ \pmb{ \sf{To  \: Verify... }}}

Cos(A - B) = CosA CosB + SinA SinB

 \: { \large{ \pmb{ \sf{Solution... }}}}

By Substituting A and B values,

{ \implies{ \sf{cos(60° - 30°) =   cos60 °\times cos30° + sin60 °\times sin30}}}

{ \implies{ \sf{cos30°=  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2}  +  \frac{ \sqrt{3} }{2}  \times  \frac{1}{2} }}} \\

{ \implies{ \sf{ \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{3} }{4}  +  \frac{ \sqrt{3} }{4} }}} \\

{ \implies{ \sf{ \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{3}  +  \sqrt{3} }{4} }}} \\

 \: { \implies{ \sf{ \frac{ \sqrt{3} }{2}  =  \frac{2 \sqrt{3} }{4} }}} \\

 \: \: { \implies{ \sf{ \frac{ \sqrt{3} }{2}  =  \frac{{ \cancel{2 }}\sqrt{3} }{2 \times { \cancel{2}}} }}} \\

 \: \: { \implies{ \sf{ \frac{ \sqrt{3} }{2}  =  \frac{\sqrt{3} }{2} }}} \\

Hence Proved

{ \large{ \pmb{  \sf{More  \: Information...}}}}

 \:\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm nd \\ \\ \rm cosec A & \rm nd& 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm nd \\ \\ \rm cot A & \rm nd & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Answered by ayushigupta302005
2

Answer:

tooo long answer given by anybody

how can he/she write this much

Step-by-step explanation:

heheheeeee

Similar questions