Math, asked by pankhudiv, 30 days ago

Please help me with this question.​

Attachments:

Answers

Answered by AllenGPhilip
2

Step-by-step explanation:

here the answer any doubt ask me

Attachments:
Answered by Anonymous
3

Answer 1:

 {: \implies \dfrac{ \cos \theta}{1 +  \sin \theta }  +  \dfrac{ \cos \theta }{1 -  \sin \theta }  = 2 \sec \theta}

‎ ‎ ‎

» Taking LCM

‎ ‎ ‎

 {:\implies \dfrac{ \cos \theta(1 -  \sin \theta) +  \cos \theta(1 -  \sin \theta) }{(1 +  \sin \theta )(1 -  \sin \theta)}   = 2 \sec \theta}

‎ ‎ ‎

» Apply identity (A+B)(A-B)=-

‎ ‎ ‎

 {:\implies \dfrac{ \cos \theta(1 -  \sin \theta) +  \cos \theta(1  +   \sin \theta) }{ (1 -  \sin  ^{2} \theta)}   = 2 \sec \theta}

‎ ‎ ‎

» Apply identity 1 - sin² θ= cos² θ

‎ ‎ ‎

 {:\implies \dfrac{ \cos \theta(1 -  \sin \theta) +  \cos \theta(1  +   \sin \theta) }{ ( \cos ^{2} \theta)}   = 2 \sec \theta}

‎ ‎ ‎

» Taking cos θ common in nr.

‎ ‎ ‎

 {:\implies \dfrac{ \cos \theta(1 -  \sin \theta + 1 -  \sin \theta) }{ ( \cos ^{2} \theta)}   = 2 \sec \theta}

‎ ‎ ‎

 {:\implies \dfrac{ \cos \theta(2) }{ ( \cos ^{2} \theta)}   = 2 \sec \theta}

‎ ‎ ‎

 {:\implies \dfrac{ \cancel{ \cos \theta}(2) }{ ( \cancel{ \cos ^{2} \theta)}}   = 2 \sec \theta}

‎ ‎ ‎

 {:\implies \dfrac{ 2}{ ( \cos  \theta)}   = 2 \sec \theta}

‎ ‎ ‎

» Apply formula 1/cos θ = sec θ

‎ ‎ ‎

 {:\implies 2 \sec \theta  =  2 \sec \theta}

Hence proved

‎ ‎ ‎

 \rule{240}{1}

Answer 2:

 {:\implies  \dfrac{1 +  \cos \theta}{ \sin \theta}    +  \dfrac{ \sin \theta}{1 +  \cos \theta }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

» Taking LCM

‎ ‎ ‎

 {:\implies \dfrac{( 1 +  \cos \theta)^{2} +  \sin  ^{2} \theta}{(\sin \theta)(1 +  \cos \theta) }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

» Apply identity (A+B)²=+B²+2AB

‎ ‎ ‎

 {:\implies \dfrac{ 1 +2 \cos \theta +    \cos ^{2}  \theta +  \sin  ^{2} \theta}{(\sin \theta)(1 +  \cos \theta) }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

» Apply formula sin² θ + cos² θ = 1

‎ ‎ ‎ ‎ ‎

 {:\implies \dfrac{ 1 +2 \cos \theta +    1}{(\sin \theta)(1 +  \cos \theta) }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎ ‎

 {:\implies \dfrac{ 2 +2 \cos \theta }{(\sin \theta)(1 +  \cos \theta) }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

 {:\implies \dfrac{ 2( 1+ \cos \theta) }{(\sin \theta)(1 +  \cos \theta) }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

 {:\implies \dfrac{ 2 \cancel{( 1+ \cos \theta)} }{(\sin \theta) \cancel{(1 +  \cos \theta)} }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

 {:\implies \dfrac{ 2 }{\sin \theta  }  = 2 \:  { \text{cosec}}  \: \theta}

‎ ‎ ‎

» Apply formula 1/sin θ= cosec θ

‎ ‎ ‎ ‎

 {:\implies  2 \:  { \text{cosec}}  \: \theta  = 2 \:  { \text{cosec}}  \: \theta}

Hence proved

Similar questions