Math, asked by BrainlyPopularStar01, 19 days ago

please help me with this question​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Let a = 3 - sqrt(n), where n is a natural number. If p is the least positive value of a, then find the value of sqrt (p) + 1/ sqrt (p).

\large\underline{\sf{Solution-}}

Given that, n is a natural number and

\rm :\longmapsto\:a = 3 -  \sqrt{n}

As p is the least value of a, so a is minimum when n is largest and keeping in view that a > 0.

So, largest possible value of n = 8.

So,

Smallest possible value of a is

\rm :\longmapsto\:a = 3 -  \sqrt{8}

can be rewritten as

\rm :\longmapsto\:a = 3 -  \sqrt{2 \times 2 \times 2}

\rm :\longmapsto\:a = 3 -  2\sqrt{2}

So,

\rm :\longmapsto\:p = a = 3 - 2 \sqrt{2}

\rm :\longmapsto\:p =3 - 2 \sqrt{2}

\rm :\longmapsto\:p =2 + 1 - 2 \sqrt{2}

\rm :\longmapsto\:p = {( \sqrt{2} )}^{2}  +  {(1)}^{2}  - 2  \times \sqrt{2}  \times 1

\bf\implies \:p =  {( \sqrt{2}  - 1)}^{2}

\red{\bigg \{ \because \:  {x}^{2}  +  {y}^{2}  - 2xy =  {(x - y)}^{2} \bigg \}}

So,

\bf\implies \: \sqrt{p}  =  \sqrt{2} - 1 -  -  - (1)

Now,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{p} }

\rm \:  =  \: \dfrac{1}{ \sqrt{2}  - 1}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{ \sqrt{2}  - 1} \times \dfrac{ \sqrt{2}  + 1}{ \sqrt{2}  + 1}

\rm \:  =  \: \dfrac{ \sqrt{2}  + 1}{ {( \sqrt{2} )}^{2} -  {(1)}^{2}  }

\rm \:  =  \: \dfrac{ \sqrt{2}  + 1}{2 - 1}

\rm \:  =  \: \dfrac{ \sqrt{2}  + 1}{1}

\bf\implies \:\dfrac{1}{ \sqrt{p} }  =  \sqrt{2}  + 1 -  -  - (2)

So, on adding equation (1) and (2), we get

\red{\rm :\longmapsto\: \sqrt{p} + \dfrac{1}{ \sqrt{p} } =  \sqrt{2} - 1 +  \sqrt{2}  + 1 = 2 \sqrt{2} }

Additional Information :-

 \boxed{ \sf \:  {(x + y)}^{2} =  {x}^{2}  +  {y}^{2}  + 2xy}

 \boxed{ \sf \:  {(x  -  y)}^{2} =  {x}^{2}  +  {y}^{2}   -  2xy}

 \boxed{ \sf \:  {(x  -  y)}^{3} =  {x}^{3}   -   {y}^{3}   - 3xy(x - y)}

 \boxed{ \sf \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x +  y)}

\boxed{ \sf \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)}

\boxed{ \sf \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2} )}

\boxed{ \sf \:  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2}) }

\boxed{ \sf \:  {x}^{4} -  {y}^{4} = (x  - y)(x + y)( {x}^{2} +  {y}^{2})}

Answered by oOosnowflakeoOo
2

Answer:

p = (  \sqrt{2}  - 1) {}^{2}

Similar questions