Math, asked by gourinamdeo2004, 2 months ago

please help me with this question asap!​

Attachments:

Answers

Answered by SrijanShrivastava
1

 \sf {(1 + x)}^{n}  = C_{0} + xC_{1}    + ... +  {x}^{n } C_{n}

 \sf x {(1 + x)}^{n}  =x C_{0} + x^{2} C_{1}  + ... +  {x}^{n + 1 } C_{n}

Differentiating both the sides w.r.t. x

 \\ \sf  nx {(1 + x)}^{n - 1}  +  (1 + x) ^{n}  =   \sum _{r = 0} ^{n} (r + 1) ^{n} C_{r} {x}^{r}

Substituting x=1

 \\   \sf C_{0} + 2C_{1} + ... + (n + 1)C _{n} = n {2}^{n - 1}  +  {2}^{n}

 \\  \boxed{\sf   \sum _{r = 0} ^{n} (r + 1) ^{n} C_{r} {x}^{r}  = (n + 2) {2}^{n - 1}}

Similar questions