Math, asked by BrainlyPopularStar01, 3 months ago

please help me with this question with explanation​

Attachments:

Answers

Answered by jayantipatil53
2

Answer:

(4) this is a answer

 \frac{2}{5} \frac{79}{80}   \:  \:  \:  \:  \:  \: 0.9913730875

this is a answer I hope this is a correct answer ok

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

Which of the following irrational numbers is smallest ?

\rm :\longmapsto\: \:  \sqrt[100]{\dfrac{1}{4} }, \:  \sqrt[200]{\dfrac{1}{8} }, \: \sqrt[300]{\dfrac{1}{32} }, \: \sqrt[400]{\dfrac{1}{64} }

 \:  \:  \:  \rm \: (1). \:  \sqrt[300]{\dfrac{1}{32} }

 \:  \:  \:  \rm \: (2). \:  \sqrt[400]{\dfrac{1}{64} }

 \:  \:  \:  \rm \: (3). \:  \sqrt[200]{\dfrac{1}{8} }

 \:  \:  \:  \rm \: (4). \:  \sqrt[100]{\dfrac{1}{4} }

\large\underline{\sf{Solution-}}

Given irrational numbers are

\rm :\longmapsto\: \:  \sqrt[100]{\dfrac{1}{4} }, \:  \sqrt[200]{\dfrac{1}{8} }, \: \sqrt[300]{\dfrac{1}{32} }, \: \sqrt[400]{\dfrac{1}{64} }

Let we first convert the indices of each irrational number same.

So, we have to first find the LCM of 100, 200, 300 and 400

So, using Prime factorization method,

 \red{\rm :\longmapsto\:Prime \: Factors \: of \: 100 =  {2}^{2} \times  {5}^{2}}

 \red{\rm :\longmapsto\:Prime \: Factors \: of \: 200 =  {2}^{3} \times  {5}^{2}}

 \red{\rm :\longmapsto\:Prime \: Factors \: of \: 300 =  {2}^{2} \times3 \times   {5}^{2}}

 \red{\rm :\longmapsto\:Prime \: Factors \: of \: 400 =  {2}^{4} \times  {5}^{2}}

So,

\bf\implies \:LCM [ 100, 200,300,400 ] =  {2}^{4} \times 3 \times  {5}^{2} = 1200

We know,

\green{\boxed{ \bf{ \:  \:  \:  \sqrt[y]{x} =  \sqrt[yz]{ {x}^{z} }  \:  \:  \: }}}

So, the given irrational numbers can be rewritten as

Consider,

\rm :\longmapsto\:\sqrt[100]{\dfrac{1}{4} }

can be rewritten as

 \rm \:  =  \: \sqrt[100 \times 12]{\dfrac{1}{ {4}^{12} } }

 \rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {( {2}^{2} )}^{12} } }

 \rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {2}^{24} } }

Now, Consider

\rm :\longmapsto\:\sqrt[200]{\dfrac{1}{8} }

can be rewritten as

\rm \:  =  \: \sqrt[200 \times 6]{\dfrac{1}{ {8}^{6} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ { {(2}^{3} )}^{6} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {2}^{18} } }

Now, Consider

\rm :\longmapsto\:\sqrt[300]{\dfrac{1}{32} }

can be rewritten as

\rm \:  =  \: \sqrt[300 \times 4]{\dfrac{1}{ {32}^{4} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {( {2}^{5} )}^{4} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {2}^{20} } }

Now, Consider

\rm :\longmapsto\:\sqrt[400]{\dfrac{1}{64} }

can be rewritten as

\rm \:  =  \: \sqrt[400 \times 3]{\dfrac{1}{ {64}^{3} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ { {(2}^{6} )}^{3} } }

\rm \:  =  \: \sqrt[1200]{\dfrac{1}{ {2}^{18} } }

So,

\bf\implies \:\sqrt[1200]{\dfrac{1}{ {2}^{24} } } < \sqrt[1200]{\dfrac{1}{ {2}^{20} } } < \sqrt[1200]{\dfrac{1}{ {2}^{18} } }

\bf\implies \:\sqrt[100]{\dfrac{1}{4} } < \sqrt[300]{\dfrac{1}{32} } < \sqrt[200]{\dfrac{1}{8} } = \sqrt[400]{\dfrac{1}{64} }

Hence,

\bf\implies \:Smallest \: irrational \: number \: is \: \sqrt[100]{\dfrac{1}{4} }

  • So, option (4) is correct
Similar questions