Math, asked by Navyah, 3 months ago

please help me wt this qs​

Attachments:

Answers

Answered by Anonymous
7

Given

\sf\to y =(cot^{-1}x)^2

To Prove

\sf\to (x^2+1)^2\dfrac{d^2y}{dx^2} +2x(x^2+1)\dfrac{dy}{dx} = 2

Now Take

\sf\to y =(cot^{-1}x)^2

\sf\to\dfrac{dy}{dx}   =(cot^{-1}x)^2

By using the Chain rule we get

\sf\to\dfrac{dy}{dx} = 2(cot^{-1}x)\times\dfrac{-1}{x^2+1} =\dfrac{-2(cot^{-1}x)}{x^2+1}

Now we have to find

\sf\to \dfrac{d^2y}{dx^2}  =\dfrac{-2(cot^{-1}x)}{x^2+1}

By using u/v method we get

\sf\to \dfrac{d^2y}{dx^2} = \dfrac{(x^2+1)\times -2\dfrac{d(cot^{-1}x)}{dx}-(-2)(cot^{-1}x)\dfrac{d(x^2+1)}{dx}  }{(x^2+1)^2}

\sf\to \dfrac{d^2y}{dx^2}  =\dfrac{(x^2+1)\times\dfrac{-1\times-2}{(x^2+1)}+2cot^{-1}x\times2x }{(x^2+1)^2}

\sf\to \dfrac{d^2y}{dx^2} = \dfrac{2+4xcot^{-1}x}{(x^2+1)^2}

Now put the value on

\sf\to (x^2+1)^2\dfrac{d^2y}{dx^2} +2x(x^2+1)\dfrac{dy}{dx}

We have

\sf\to\dfrac{dy}{dx} =\dfrac{-2(cot^{-1}x)}{x^2+1}

\sf\to \dfrac{d^2y}{dx^2} = \dfrac{2+4xcot^{-1}x}{(x^2+1)^2}

Put the value

\sf\to (x^2+1)^2\times \dfrac{2+4xcot^{-1}x}{(x^2+1)^2} +2x(x^2+1)\times\dfrac{-2(cot^{-1}x)}{x^2+1}

\sf\to \cancel{(x^2+1)^2}\times \dfrac{2+4xcot^{-1}x}{\cancel{(x^2+1)^2}}+2x\cancel{(x^2+1)}\times\dfrac{-2(cot^{-1}x)}{\cancel{x^2+1}}

\sf\to 2+4cot^{-1}x-4xcot^{-1}x

\sf\to 2

Hence Proved


Anonymous: Great ! :fb_wow:
Similar questions