Math, asked by dagarnishchal, 9 months ago

please help me
(x+2y)²-4(x-y)²
solve by factorisation​

Answers

Answered by anindyaadhikari13
3

Solution:

Given to evaluate:

 \tt = {(x + 2y)}^{2} - 4 {(x - y)}^{2}

Can be written as:

 \tt = {(x + 2y)}^{2} - [2{(x - y)}]^{2}

 \tt = {(x + 2y)}^{2} - (2x - 2y)^{2}

Using identity a² - b² = (a + b)(a - b), we get:

 \tt = [(x + 2y) + (2x - 2y)][(x + 2y) - (2x - 2y)]

 \tt = 3x \times ( - x + 4y)

 \tt = 3x(4y - x)

 \tt = 12xy - 3 {x}^{2}

Which is our required answer.

Answer:

  • (x + 2y)² - 4(x - y)² = 12xy - 3x²

Learn More:

Algebraic Identities.

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (a + b)² + (a - b)² = 2(a² + b²)
  • (a + b)² - (a - b)² = 4ab
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Similar questions