Math, asked by TechShino, 1 month ago

Please Help Meee
find a quadratic polynomial whose sum add product of zeros are 0 and \sqrt{15} respectively ​

Answers

Answered by SparklingBoy
110

▪Given :-

For a Quadratic Polynomial

   

Sum of Zeros = 0

Product of Zeros = √15

___________________________

▪To Find :-

The Quadratic Polynomial.

___________________________

▪Key Concept :-

If sum and product of zeros of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

 \Large\bf  {x}^{2}  - s \: x + p

___________________________

▪Solution :-

Here,

Sum = s = 0

and

Product = p = √15.

So,

Required Polynomial should be

  \bf{x}^{2}  - 0x +  \sqrt{15}

i.e.

 \huge \pink{\bf  {x}^{2}  +  \sqrt{15}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
116

Answer:

Given :-

  • The sum and product of zeros are 0 and √15 respectively.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula ;

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}}\\

Solution :-

Given :

\bigstar\: \: \bf{Sum\: of\: roots\: (\alpha + \beta) =\: 0}\\

\bigstar\: \: \bf{Product\: of\: roots\: (\alpha\beta) =\: \sqrt{15}}\\

According to the question by using the formula we get,

\small \leadsto \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}\\

\small\longrightarrow \bf{x^2 - (\alpha + \beta)x + (\alpha\beta) =\: 0}\\

\small\longrightarrow \sf x^2 - (0)x + \sqrt{15} =\: 0

\longrightarrow \sf x^2 - 0x + \sqrt{15} =\: 0

\small\longrightarrow \sf x^2 + \sqrt{15} =\: 0

\small\longrightarrow \sf\bold{\red{x^2 + \sqrt{15} =\: 0}}

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\: polynomial\: is\: x^2 + \sqrt{15} =\: 0\: .}}}}\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

Quadratic Equation with one variable :

✪ The general form of the equation is ax² + bx + c.

[ Note :- ● If a = 0, then the equation becomes to a linear equation. ]

● If b = 0, then the roots of the equation becomes equal but opposite in sign. ]

● If c = 0, then one of the roots is zero. ]

Nature of the roots :

- 4ac is the discriminant of the equation.

Then,

◆ If - 4ac = 0, then the roots are real and equal.

◆ If - 4ac > 0, then the roots are real and unequal.

◆ If - 4ac < 0, then the roots are imaginary and no real roots.

Similar questions