Math, asked by hornystudiers, 1 year ago

please help my guys for differentiate with respect to x​

Attachments:

Answers

Answered by praneethks
2

Step-by-step explanation:

(a)

 \frac{d}{dx}( {x}^{4}  + 3 {x}^{2} - 2x) =  >  \frac{d}{dx}( {x}^{4}) +

 \frac{d}{dx}(3 {x}^{2}) +  \frac{d}{dx}( - 2x) =  > (4) {x}^{4 - 1}

 + 3. 2.{x}^{2 - 1} - 2 =  > 4 {x}^{3} + 6x - 2

(b)

 \frac{d}{dx}( {x}^{2}cosx) =  > cosx \frac{d}{dx}( {x}^{2}) +

 {x}^{2} \frac{d}{dx}(cosx) =  > 2xcosx -   {x}^{2}sinx

(c)

let's take

 {(6x + 7)} \: as \: y \:

So

 \frac{d}{dx} {(y}^{4}) =  > 4 {y}^3 \frac{dy}{dx} =  > 4. {(6x + 7)}^{3}.6

 =  > 24 {(6x + 7)}^{3}

(d)

 \frac{d}{dx}( {x}^{5} {e}^{x}) =  >  {e}^{x} \frac{d}{dx}( {x}^{5}) +  {x}^{5} \frac{d}{dx}( {e}^{x}) =  >

5 {x}^{4} {e}^{x} +  {x}^{5} {e}^{x} =  >  {e}^{x}(5 {x}^{4} +  {x}^5)

(e)

 \frac{ d}{dx}( \frac{1 + x}{ {e}^{x} }) =  >  \frac{ {e}^{x}(1) - (1 + x) {e}^{x} }{ {e}^{2x}} =  >  -  \frac{x {e}^{x} }{ {e}^{2x}}

 =  >  -  \frac{x}{ {e}^{x} }

Hope it helps you.

Similar questions