Math, asked by PhoenixParker, 1 day ago

please help no silly answer needed​

Attachments:

Answers

Answered by tennetiraj86
11

Answer:

10

Step-by-step explanation:

Used formulae:-

→ (ab)^m = a^m × b^m

→ (a/b)^m = a^m / b^m

→ a^m × a^n = a^(m+n)

→ a^m / a^n = a^(m-n)

→ (a^m)^n = a^(mn)

→ a^0 = 1

→ a^-n = 1/(a^n)

Attachments:
Answered by mathdude500
11

Question :-

Find the value of

\rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times  \sqrt[3]{3} \times  \sqrt[4]{4} }{ \sqrt[ - 5]{10}  \times {\bigg(5\bigg) }^{\dfrac{3}{5}}} \div \dfrac{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }}{{\bigg(4\bigg) }^{ - \dfrac{3}{5}} \times 6} \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times  \sqrt[3]{3} \times  \sqrt[4]{4} }{ \sqrt[ - 5]{10}  \times {\bigg(5\bigg) }^{\dfrac{3}{5}}} \div \dfrac{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }}{{\bigg(4\bigg) }^{ - \dfrac{3}{5}} \times 6} \\

We know,

\boxed{\sf{  \:  \:  \sqrt[n]{a} \:  =  \: {\bigg(a\bigg) }^{\dfrac{1}{n} } \: }} \\

So, using this result, can be rewritten as

\rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times {\bigg(3\bigg) }^{\dfrac{1}{3}} \times {\bigg(4\bigg) }^{\dfrac{1}{4} }}{{\bigg(10\bigg) }^{ - \dfrac{1}{5} } \times {\bigg(5\bigg) }^{\dfrac{3}{5}}} \div \dfrac{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }}{{\bigg(4\bigg) }^{ - \dfrac{3}{5}} \times 3 \times 2} \\

\rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times {\bigg(3\bigg) }^{\dfrac{1}{3}} \times {\bigg(2\bigg) }^{\dfrac{2}{4} }}{{\bigg(2 \times 5\bigg) }^{ - \dfrac{1}{5} } \times {\bigg(5\bigg) }^{\dfrac{3}{5}}} \div \dfrac{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }}{{\bigg(2\bigg) }^{ - \dfrac{6}{5}} \times 3 \times 2} \\

We know,

\boxed{\tt{  \:  \:  {(x \times y)}^{n} \:  =  \:  {x}^{n}  \times  {y}^{n} \:  \: }} \\

So, using this identity, we get

\rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times {\bigg(3\bigg) }^{\dfrac{1}{3}} \times {\bigg(2\bigg) }^{\dfrac{2}{4} }}{{\bigg(2\bigg) }^{ - \dfrac{1}{5} } \times {\bigg(5\bigg) }^{ - \dfrac{1}{5} } \times {\bigg(5\bigg) }^{\dfrac{3}{5}}}  \times  \dfrac{{\bigg(2\bigg) }^{ - \dfrac{6}{5}} \times 3 \times 2}{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }} \\

We know

\boxed{\sf{  \:  \:  {x}^{m} \times  {x}^{n}  \:  =  \:  {x}^{m + n} \: }} \\

\boxed{\sf{  \:  \:  {x}^{m} \div  {x}^{n}  \:  =  \:  {x}^{m  -  n} \: }} \\

So, using these Identities, we get

\rm \:  =  \: {\bigg(2\bigg) }^{\dfrac{1}{2} + \dfrac{1}{2}  + \dfrac{1}{5}  - \dfrac{6}{5}  + 1} \times {\bigg(3\bigg) }^{\dfrac{1}{3} + 1 - \dfrac{4}{3} } \times {\bigg(5\bigg) }^{\dfrac{1}{5} + \dfrac{7}{5}  - \dfrac{3}{5} } \\

\rm \:  =  \: {\bigg(2\bigg) }^{\dfrac{5 + 5 + 2 - 12 + 10}{10}} \times {\bigg(3\bigg) }^{\dfrac{1 + 3 - 4}{3}} \times {\bigg(5\bigg) }^{\dfrac{1 + 7 - 3}{5} } \\

\rm \:  =  \: {\bigg(2\bigg) }^{\dfrac{10}{10}} \times {\bigg(3\bigg) }^{\dfrac{0}{3}} \times {\bigg(5\bigg) }^{\dfrac{5}{5} } \\

\rm \:  =  \:  {2}^{1} \times  {3}^{0} \times  {5}^{1} \\

\rm \:  =  \: 2 \times 1 \times 5

\rm \:  =  \: 10 \\

Hence,

\boxed{\tt{ \rm \: \dfrac{{\bigg(2\bigg) }^{\dfrac{1}{2}} \times  \sqrt[3]{3} \times  \sqrt[4]{4} }{ \sqrt[ - 5]{10}  \times {\bigg(5\bigg) }^{\dfrac{3}{5}}} \div \dfrac{{\bigg(3\bigg) }^{\dfrac{4}{3}} \times {\bigg(5\bigg) }^{ - \dfrac{7}{5} }}{{\bigg(4\bigg) }^{ - \dfrac{3}{5}} \times 6}  = 10 \:}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  {x}^{ - n} \:  =  \:  \frac{1}{ {x}^{n} } \:  \: }} \\

\boxed{\tt{  \:  \:  {\bigg[\dfrac{x}{y} \bigg]}^{ - n}  =  {\bigg[\dfrac{y}{x} \bigg]}^{n}  \:  \: }} \\

\boxed{\tt{  \:  \:  {x}^{0} \:  =  \: 1 \:  \: }} \\

Similar questions