Math, asked by sacoupienne, 11 months ago

Please Help!!!

pliz pliz pliz pliz pliz pliz pliz pliz pliz pliz pliz pliz pliz

Attachments:

Answers

Answered by malavinod
2

hiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Answered by Anonymous
2

❏ Question:-

Refer to the questionar attachment :).

Find the area of the triangular prism,

❏ Solution:-

Here , Area of the Prism, is

A_{prism}=A_{ABCJ}+A_{CDE}+A_{CEHJ}+A_{IHJ}+A_{EFGH}

Now, ABCJ , CEHJ and EFGH are rectangles,

A_{ABCJ}=(11\times3)=33\:unit^2

A_{CEHJ}=(11\times4)=44\:unit^2

A_{EFGH}=(11\times5)=55\:unit^2

Now, CDE and IHJ are right angled Triangle,

A_{CDE}=\frac{1}{2}\times base\times height

\implies A_{CDE}=\frac{1}{2}\times CE\times CD

\implies A_{CDE}=\frac{1}{\cancel2}\times\cancel4 \times 3

\implies A_{CDE}=6\:unit^2

A_{IHJ}=\frac{1}{2}\times base\times height

\implies A_{IHJ}=\frac{1}{2}\times HJ \times IJ

\implies A_{IHJ}=\frac{1}{\cancel2}\times\cancel 4 \times 3

\implies A_{IHJ}=6\:unit^2

\therefore A_{prism}=A_{ABCJ}+A_{CDE}+A_{CEHJ}+A_{IHJ}+A_{EFGH}

\implies A_{prism}=(33+6+44+6+55)\:unit^2

\implies\boxed{ \large{A_{\red{prism}}=144\:unit^2}}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

Attachments:
Similar questions