Math, asked by bhavyarishi1, 8 months ago

Please help quadratic equations

Attachments:

Answers

Answered by Anonymous
2

Question:-

 \to \:  \rm \: eq \:  \:  :   \: 2 \sqrt{3}  {x}^{2}  + 7x + 2 \sqrt{3}  = 0

Solution:-

 \to \:  \rm \: eq \:  \:  :   \: 2 \sqrt{3}  {x}^{2}  + 7x + 2 \sqrt{3}  = 0

Compare with :- ax² + bx + c = 0 , we get

 \rm \: a = 2 \sqrt{3}    \:  \:  \:  \: b \:  =  \: 7 \:  \: and \:  \: c \:  = 2 \sqrt{ 3}

Using quadratic formula

 \implies \:  \rm \: x =  \frac{ - b \pm \:  \sqrt{D} }{2a}

Find discriminant ( D )

 \rm \:  \to \: D =  {b}^{2}  - 4ac

We get

 \rm \: D = (7) {}^{2}  - 4 \times 2 \sqrt{3}  \times 2 \sqrt{3}

 \rm \: D = 49 - 4 \times 12

 \rm \: D = 49 - 48

 \rm \: D = 1

Now put the value in quadratic formula we get

\implies \:  \rm \: x =  \frac{ - b \pm \:  \sqrt{D} }{2a}

 \rm \: x =  \frac{ - 7 \pm \sqrt{1} }{2 \times 2 \sqrt{3} }

 \rm \: x =  \frac{ - 7 + 1}{2 \sqrt{3} }  \:  \: and \:  \:  \frac{ - 7 - 1}{2 \sqrt{3} }

 \rm \: x =  \frac{ - 6}{2 \sqrt{3} }  \:  \: and \:  \:  \frac{ - 8}{2 \sqrt{3} }

 \rm \: x =  \frac{ - 3}{ \sqrt{3} }  \: and \:  \:  \frac{ - 4}{ \sqrt{3} }

Now rationalize the denominator, we get

 \rm \: x =  \frac{ - 3}{ \sqrt{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} }  \:  \: and \:  \frac{ - 4}{ \sqrt{3} }  \times   \frac{ \sqrt{3} }{ \sqrt{3} }

 \rm \: x =  \frac{ - 3 \sqrt{3} }{3}  \:  \: and \:  \:  \frac{ - 4 \sqrt{3} }{3}

So , final value of x is

 \rm \: x =  -  \sqrt{3}  \:  \: and \:  \:  \frac{ - 4 \sqrt{3} }{3}

Answered by InfiniteSoul
1

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf 2\sqrt 3 x^2 + 7x + 2\sqrt 3 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies 2\sqrt 3 x^2 + 7x + 2\sqrt 3= 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 2√3

☯ b = 7

☯ c = 2√3

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (7)^2 - 4 \times 2\sqrt 3\times 2\sqrt 3

\sf\implies D = 49 - 48

\sf\implies D = 1

\sf{\underline{\boxed{\blue{\large{\bold{ D = 1}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 7 )  \pm\sqrt {1} }{2\times 2\sqrt 3}

\sf\implies x = \dfrac{ -7 \pm 1 }{4\sqrt 3}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -7 + 1  }{ 4\sqrt 3 }

\implies x =  \dfrac {-6}{4\sqrt 3}

  • Rationalize the denominator

\implies x =  \dfrac {-6}{4\sqrt 3}\times\dfrac{4\sqrt 3}{4\sqrt 3}

\implies x =  \dfrac {-24\sqrt 3}{48}

\implies x =  \dfrac {-\sqrt 3}{2}

\implies x = \dfrac{-\sqrt 3}{2}

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{-\sqrt 3}{2}}}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ -7 - 1  }{ 4\sqrt 3 }

\implies x =  \dfrac {-8}{4\sqrt 3}

Rationalize the denominator

\implies x =  \dfrac {-8}{4\sqrt 3}\times\dfrac{4\sqrt 3}{4\sqrt 3}

\implies x =  \dfrac {-32\sqrt 3}{48}

\implies x =  \dfrac {-2\sqrt 3}{3}

\implies x = \dfrac{-2\sqrt 3}{3}

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{-2\sqrt 3}{3}}}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{-\sqrt 3}{2} \: or \:-\dfrac{-2\sqrt3}{3}}}}}}}

Similar questions