Math, asked by ashutosh620, 1 year ago

please help ....
solve the inequations:-​

Attachments:

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:

ashutosh620: sorry not satisfied
ashutosh620: how directly come (x-2)(x^2.......)
brunoconti: dont be
ashutosh620: plz tell
ashutosh620: error is therre
ashutosh620: plz rlaborate it
Ritiksuglan: hi
sivaprasath: I elaborated it
Answered by sivaprasath
0

Answer:

⇒ x ∈ (-3 , 2) ∪ (4 , ∞)

Step-by-step explanation:

Given :

To solve for range of x, if

x³ - 3x² - 10x + 24 > 0

Solution :

⇒ x³ - 3x² - 10x + 24 > 0

⇒ x³ - 2x² - x² + 2x - 12x + 24 > 0

⇒ x² (x - 2) - x (x - 2) - 12 (x - 2) > 0

⇒ (x - 2) (x² - x - 12) > 0

⇒ (x - 2) (x² - 4x + 3x - 12) > 0

⇒ (x - 2) [ x( x - 4) + 3(x - 4) ] > 0

⇒ (x - 2) (x + 3) (x - 4) > 0

 _________________________

-∞           -3     0    2     4           ∞

If x ∈ (-∞ , -3)

x - 2 < 0  (x - 2) must be negative.

x + 3 < 0  (x + 3) must be negative.

x - 4 < 0  (x - 4) must be negative.

(x - 2) ( x + 3) (x - 4) < 0   ( - × - × - = -),

Hence, x ∉ (-∞ , -3)  (Because, The product must be greater than 0, not less than 0.)

If x = - 3,.

⇒ (x - 2) ( x + 3) (x - 4) = (-3 - 2) ( -3 + 3) (-3 - 4) = (-5) (0) (-7) = 0,.

⇒ x ≠ -3 (Because, The product must be greater than 0, not 0)

__

If x ∈ (-3 , 2)

x - 2 < 0  must be negative.

x + 3 > 0  must be positive.

x - 4 < 0  must be negative.

(x - 2) ( x + 3) (x - 4) > 0   ( - × + × - = +)

⇒ ∴ x ∈ (-3 , 2) (Because, The product must be greater than 0)

If x = 2,

(x - 2) ( x + 3) (x - 4) = (2 - 2) ( 2 + 3) (2 - 4) = (0) (5) ( -2) = 0

⇒ x ≠ 2 (Because, The product must be greater than 0, not 0)

If x ∈ (2 , 4)

x - 2 > 0  must be positive.

x - 4 < 0  must be negative.

x + 3 > 0  must be positive.

(x - 2) (x + 3) (x - 4) < 0   ( + × - × + = -)

⇒ x ∉ (2 , 4) (Because, The product must be greater than 0, not less than 0.)

If x = 4,

(x - 2) ( x + 3) (x - 4) = (4 - 2) (4 + 3) (4 - 4) = (2) (7) (0) = 0

⇒ x ≠ 4 (Because, The product must be greater than 0, not 0)

If x ∈ (4 , ∞)

x - 2 > 0  (x - 2) must be positive

x - 4 > 0  (x - 2) must be positive

x + 3 > 0  (x - 2) must be positive

(x - 2) ( x + 3) (x - 4) < 0   ( + × + × + = +)

⇒ ∴ x ∈ (4 , ∞) (Because, The product must be greater than 0.)

⇒ x ∈ (-3 , 2) ∪ (4 , ∞)


sivaprasath: Mark as Brainliest
Similar questions