Math, asked by EmiK, 1 month ago

Please help solve this question.

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

 \rm \: P(n) : sin \theta + sin2\theta  + sin3\theta  +  -  -  -  + sinn\theta  = \dfrac{sin\dfrac{(n + 1)\theta }{2} sin\dfrac{n\theta }{2}}{sin\dfrac{\theta }{2}}

Step :- 1 For n = 1, we have

 \rm \: P(1) : sin \theta  =  \dfrac{sin\dfrac{(1 + 1)\theta }{2} sin\dfrac{\theta }{2}}{sin\dfrac{\theta }{2}}

\rm :\implies\:sin\theta  = sin\theta

\rm :\implies\:P(n) \: is \: true \: for \: n = 1

Step :- 2 Let assume that statement P(n) is true for n = k, where k is some natural number.

 \rm \: P(k) : sin \theta + sin2\theta  + sin3\theta  +  -  -  -  + sink\theta  = \dfrac{sin\dfrac{(k + 1)\theta }{2} sin\dfrac{k\theta }{2}}{sin\dfrac{\theta }{2}}

Step : - 3 We have to prove that statement P(n) is true for n = k + 1.

 \rm \: P(k + 1) : sin \theta + sin2\theta  + sin3\theta  +  -  -  -  + sin(k + 1)\theta  = \dfrac{sin\dfrac{(k + 2)\theta }{2} sin\dfrac{(k + 1)\theta }{2}}{sin\dfrac{\theta }{2}}

Consider,

\rm :\longmapsto\:sin \theta + sin2\theta  + sin3\theta  +  -  -  -  + sin(k + 1)\theta

\rm \:  =  \:  \: \dfrac{sin\dfrac{(k + 1)\theta }{2} sin\dfrac{k\theta }{2}}{sin\dfrac{\theta }{2}} + sin(k + 1)\theta

\rm \:  =  \:  \: \dfrac{sin\dfrac{(k + 1)\theta }{2} sin\dfrac{k\theta }{2}}{sin\dfrac{\theta }{2}} + 2sin\dfrac{(k+ 1)\theta }{2}cos\dfrac{(k+ 1)\theta }{2}

\rm \:  =  \:  \: sin\dfrac{(k+ 1)\theta }{2}\bigg(\dfrac{sin\dfrac{k\theta }{2}}{sin \dfrac{\theta }{2} } + 2cos\dfrac{(k+ 1)\theta }{2} \bigg)

\rm \:  =  \:  \: sin\dfrac{(k+ 1)\theta }{2}\bigg(\dfrac{sin\dfrac{k\theta }{2} + + 2cos\dfrac{(k+ 1)\theta }{2}sin \dfrac{\theta }{2} }{sin \dfrac{\theta }{2} }  \bigg)

\rm \:  =  \:  \: sin\dfrac{(k+ 1)\theta }{2}\bigg(\dfrac{sin\dfrac{k\theta }{2} + sin\bigg(\dfrac{(k + 1)\theta }{2} +  \dfrac{\theta }{2} \bigg)  +sin\bigg(\dfrac{(k + 1)\theta }{2}  -   \dfrac{\theta }{2} \bigg) }{sin \dfrac{\theta }{2} }  \bigg)

\rm \:  =  \:  \: sin\dfrac{(k+ 1)\theta }{2}\bigg(\dfrac{sin\dfrac{k\theta }{2}   +   sin\bigg(\dfrac{(k + 1)\theta }{2} +  \dfrac{\theta }{2} \bigg)   - sin\bigg(   \dfrac{k\theta }{2} \bigg) }{sin \dfrac{\theta }{2} }  \bigg)

\rm \:  =  \:  \: \dfrac{sin\dfrac{(k + 2)\theta }{2} sin\dfrac{(k + 1)\theta }{2}}{sin\dfrac{\theta }{2}}

Hence,

By the Process of Principal of Mathematical Induction,

 \rm \: P(n) : sin \theta + sin2\theta  + sin3\theta  +  -  -  -  + sinn\theta  = \dfrac{sin\dfrac{(n + 1)\theta }{2} sin\dfrac{n\theta }{2}}{sin\dfrac{\theta }{2}}

Formula Used :-

\boxed{ \rm{ sin2x = 2sinxcosx}}

\boxed{ \rm{ 2cosxsiny = sin(x + y) - sin(x - y)}}

Similar questions