Math, asked by nidhilodha2645, 6 months ago

please help solve this question.....
 \frac{cos \: 65}{sin25}  -  \frac{ \tan(20) }{ \cot(70) }  -  \sin(90)  +  \frac{ \cos(30 +  \sin(60) ) }{1  +  \cos(60 ) +  \sin(30)  }

Answers

Answered by tyrbylent
1

Answer:

\frac{\sqrt{3} -2}{2}

Step-by-step explanation:

sin (90° - β) = cos β

tan (90° - β) = cot β

1). sin 25° = sin (90° - 65°) = cos 65° ⇒ cos 65° / sin 25° = 1

2). tan 20° = tan (90° - 70°) = cot 70° ⇒ tan 20° / cot 70° = 1

3). sin 90° = 1

4). [ sin 60° = sin (90° - 30°) = cos 30° = \frac{\sqrt{3} }{2} ] ⇒

Numerator is ( \frac{\sqrt{3} }{2} + \frac{\sqrt{3} }{2} ) = √3

Denominator is (1 + \frac{1}{2} + \frac{1}{2} ) = 2

\frac{\sqrt{3} }{2}

Finally:

1 - 1 - 1 + \frac{\sqrt{3} }{2} = \frac{\sqrt{3} }{2} - 1 = \frac{\sqrt{3} -2}{2}

Answered by ashwanipratapsingh41
1

the answer is (√3-2) / 2

Attachments:
Similar questions