Math, asked by soahfernandes2005, 4 months ago

please help standard 9th SSC board ratio and proportion​

Attachments:

Answers

Answered by mrpaul5
2

Answer:

This is your answer .......

Attachments:
Answered by Arceus02
2

Given:-

  •  \sf \dfrac{x}{b + c - a}  =  \dfrac{y}{c + a - b}  =  \dfrac{z}{a + b - c}

\\

To show:-

  •   \sf \: x(b - c) + y(c - a) + z(a - b) = 0

\\

Answer:-

Let,

 \sf \dfrac{x}{b + c - a}  =  \dfrac{y}{c + a - b}  =  \dfrac{z}{a + b - c}   = k

 \sf \longrightarrow x = k(b + c - a) \quad \quad \dots (1)

 \sf \longrightarrow y = k(c + a- b) \quad \quad \dots (2)

 \sf \longrightarrow z = k(a + b- c) \quad \quad \dots (3)

\\

Required proof:

Considering LHS,

 \sf x(b - c) + y(c - a) + z(a - b)

Substituting the values of x, y and z from (1), (2) and (3) respectively,

 \sf  = k(b + c - a)(b - c) + k(c + a - b)(c - a) + k(a + b - c)(a - b)

\sf = k \{(b + c - a)(b - c) + (c + a - b)(c - a) + (a + b - c)(a - b) \}

\sf = k \{ b^2 -bc +bc -c^2-ab+ac+  {c}^{2}-ac+ac-a^2-bc + ab +  {a}^{2} -ab +ab -b^2 -ac +bc \}

\sf  =  k  \times 0

 \sf = 0

\\

Considering RHS,

  \sf  = 0

\\

So L.H.S. = R.H.S.

Hence proved!

Similar questions