❤❤Please Help❤❤
the question:-
•If 'm' times the 'm'th term of an A.P. is equal to 'n' times 'n' term, then show that the (m+n)th term
of the A.P. is zero.
Answers
Answered by
3
hey mate here's ur answer
hope it helps u .
hope it helps u .
Attachments:
Answered by
1
Answer:
Let the first term of AP = a
common difference = d
We have to show that (m+n)th term is zero or a + (m+n-1)d = 0
mth term = a + (m-1)d
nth term = a + (n-1) d
Given that m{a +(m-1)d} = n{a + (n -1)d}
⇒ am + m²d -md = an + n²d - nd
⇒ am - an + m²d - n²d -md + nd = 0
⇒ a(m-n) + (m²-n²)d - (m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n)}d -(m-n)d = 0
⇒ a(m-n) + {(m-n)(m+n) - (m-n)} d = 0
⇒ a(m-n) + (m-n)(m+n -1) d = 0
⇒ (m-n){a + (m+n-1)d} = 0
⇒ a + (m+n -1)d = 0/(m-n)
⇒ a + (m+n -1)d = 0
Proved!
Similar questions
Math,
7 months ago
Physics,
7 months ago
Psychology,
1 year ago
Science,
1 year ago
Hindi,
1 year ago