Math, asked by gurungangela13, 2 months ago

Please help to do this all questions ​

Attachments:

Answers

Answered by rahulchandragiri6
1

Step-by-step explanation:

a)

5 \sqrt{2}  - 13 \sqrt{2}  + 10 \sqrt{2}

 =  \sqrt{2} (5 - 13 + 10)

 =  \sqrt{2} (2) = 2 \sqrt{2}

b)

 \sqrt{32}  +  \sqrt{18} - 2 \sqrt{2}

 = 3 \sqrt{2}  + 4 \sqrt{2}  - 2 \sqrt{2}

 =  \sqrt{2} (3 + 4 - 2)

 =  \sqrt{2} (5) = 5 \sqrt{2}

c)

( \sqrt{3}  -  \sqrt{2} ) \sqrt{3}

 = ( \sqrt{3}  \sqrt{3} ) - ( \sqrt{2}  \sqrt{3} )

 = 3 -  \sqrt{6}

d)

 \sqrt{5} ( \sqrt{5}  -  \sqrt{2} )

 = ( \sqrt{5}  \sqrt{5} ) - ( \sqrt{5}  \sqrt{2} )

 = 5 -  \sqrt{10}

e)

 \frac{4 \sqrt{50} }{ \sqrt{200}  }

 = \frac{4 \sqrt{50} }{2 \sqrt{50}  } = 2

f)

2 \sqrt{6}  \times  \sqrt{3}  \times  \sqrt{2}

 = 2 \sqrt{3  \times 2}  \times  \sqrt{3}  \times  \sqrt{2}

 = 2 \times  \sqrt{3}  \times  \sqrt{3}  \times  \sqrt{2}  \times  \sqrt{2}

 = 2 \times 3 \times 2 = 12

g) there's a formula that;

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

According to the problem ;

(2 \sqrt{3}  -  \sqrt{5} )(2 \sqrt{3}  +  \sqrt{5} )

 =  {(2 \sqrt{3)} }^{2}  -  {( \sqrt{5} )}^{2}

 = (4 \times 3) - 5 = 12 - 5 = 7

If you like the process please comment.

Please give rating if you like.

Similar questions