Math, asked by MiraculousBabe, 2 days ago

Please help!(Vieta's Formulas) Let r, s, and t be solutions to the equation $2x^3 - 3x^2 + 4x - 1 = 0$. Find $r^2+s^2+t^2$.

Please include an explanation as well :)​


amitnrw: -7/4
amitnrw: r^2+s^2+t^2 = (r+s+t)^2 -2(rs + st + rt)

Answers

Answered by RvChaudharY50
27

Solution :-

comparing 2x³ - 3x² + 4x - 1 = 0 with ax³ + bx² + cx + d = 0 we get,

  • a = 2
  • b = (-3)
  • c = 4
  • d = (-1)

since roots are r, s and t ,

  • r + s + t = (-b/a) = -(-3/2) = 3/2
  • rs + st + rt = c/a = 4/2 = 2
  • rst = - d/a = -(-1)/2 = (1/2) .

we know that,

  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

then,

→ (r + s + t)² = r² + s² + t² + 2(rs + st + rt)

→ r² + s² + t² = (r + s + t)² - 2(rs + st + rt)

putting all values we get,

→ r² + s² + t² = (3/2)² - 2(2)

→ r² + s² + t² = (9/4) - 4

→ r² + s² + t² = (9 - 16)/4

→ r² + s² + t² = (-7/4) (Ans.)

Answered by Ridvisha
28

{ \underline{ \underline{ \tt{ \green{ \huge{QUESTION}}}}}}

{ \sf{let \: r \: , \: s \: , \: and \: t \: be \: the \: solutions \: to \: the \: }} \\ { \sf{equation{ \red{ \:  \:  \:  \:  \:  \: 2 {x}^{3}  - 3 {x}^{2} + 4x - 1 = 0}} }} \\ { \sf{find \: the \: { \underline{ \green{  \:  \: {r}^{2}  +  {s}^{2}  +  {t}^{2} }}}}}

{ \underline{ \underline{ \tt{ \green{ \huge{SOLUTION}}}}}}

{ \dashrightarrow{ \underline{ \underline{ \pink{  \sf{Vieta's \: formula}}}}}} \\  \\ { \blue{ \sf{relate \: the \: coefficients \: of \: a \: polynomial }}} \\ { \sf{ \blue{to \: sum \: and \: products \: of \: its \: roots.}}}

{ \tt{ \underline{given \: equation}{ \green { \:  \:  \:  \: 2 {x}^{3} - 3 {x}^{2}    + 4 - 1 = 0}}}} \\  \\ { \tt{ \underline{ comparable \: eqn}{ \green{  \: \: a {x}^{3}  + b {x}^{2}  + cx + d = 0}}}} \\  \\ { \sf{ \blue{on \: comparing \: both \: . \: we \: get}}}

{ \dashrightarrow{ \sf{a = { \red{2}}}}} \\ { \dashrightarrow{ \sf{b =  { \red{ - 3}}}}} \\ { \dashrightarrow{ \sf{c = { \red{4}}}}} \\ { \dashrightarrow{ \sf{d = { \red{ - 1}}}}}

{ \underline{ \sf{according \: to \: question}}} \\  \\  { \sf{ \green{the \: roots \: are \: r, \: s, \: and \: t}}}

{  :{ \implies{ \tt{ \pink{r + s + t =  \frac{ - b}{a}  =  \frac{ - ( - 3)}{2}  =  \frac{3}{2}}}}}}  \\  \\  \\ { : { \implies{ \tt{ \pink{rs + st + rt =  \frac{c}{a}  =  \frac{4}{2}  = 2}}}}} \\  \\  \\ { : { \implies{ \tt{ \pink{rst =  \frac{ - d}{a} =  \frac{ - ( - 1)}{2}  =  \frac{1}{2} }}}}}

{ \underline{ \green{ \sf{ {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)}}}} \\  \\ { \sf{similarly}} \\  \\ { \underline{ \sf{ \red {{(r + s + t)}^{2}  =  {r}^{2}  +  {s}^{2}  +  {t}^{2}  + 2(rs + st + rt)}}}} \\  \\ { \underline{ \sf{ \red{ {r}^{2}  +  {s}^{2}  +  {t}^{2}  =  {(r + s  + t)}^{2}  - 2(rs + st + rt)}}}}

{ : { \implies{ \green{ \sf{ {r}^{2}  +  {s}^{2}  +  {t}^{2}  =  {( \frac{3}{2}) }^{2}  - 2(2)}}}}} \\  \\  \\ { : { \implies{ \green{ \sf{ {r}^{2}  +  {s}^{2}  +  {t}^{2}  =  \frac{9}{4}  - 4}}}}} \\  \\  \\ { : { \implies{ \green{ \sf{ {r}^{2}  +  {s}^{2}  +  {t}^{2}  =  \frac{9 - 16}{4} }}}}}

 { : { \implies{ \underline{ \boxed{ \red{ \sf{ {r}^{2}  +  {s}^{2}  +  {t}^{2}  =  \frac{ - 7}{4} }}}}}}}

Similar questions