Math, asked by carlysiberman, 10 months ago

Please help with this question I will name u brainliest and you'll get 30 POINTS.

Attachments:

Answers

Answered by manoj0415
1

Step-by-step explanation:

by pythagorean theorem I got the equations in terms of x and by simplifying I got the value x is 7

mark me as brilliant

Attachments:
Answered by BrainlyQueen01
5

Answer:

Hypotenuse = 10 inches

Perpendicular = 8 inches

Base = 6 inches

Step-by-step explanation:

Since, the triangle given is a right angled triangle. We can apply Pythagoras Theorem here ;

       According to this theorem -

(Hypotenuse)² = (Base)² + (Perpendicular)²

⇒ (2x - 4)² = (x - 1)² + (x + 1)²

[Using Identity : (a ± b)² = a² + b² ± 2ab]

⇒ 4x² + 16 - 16x = x² + 1 - 2x + x² + 1 + 2x

⇒ 4x² - 16x + 16 = 2x² + 2

⇒ 4x² - 2x² - 16x + 16 - 2 = 0

⇒ 2x² - 16x + 14 = 0

⇒ x² - 8x + 7 = 0

\boxed{\bf Equation : x^2 - 8x +7 = 0}

Solving the above equation ;

⇒ x² - 8x + 7 = 0

⇒ x² - x - 7x + 7 = 0

⇒ x ( x - 1 ) - 7 ( x - 1 ) = 0

⇒ ( x - 1 ) ( x - 7 ) = 0

⇒ x = 1 or x = 7

We got two values of x,

Case I : When x = 1,

Length of each side,

⇒ Hypotenuse = 2x - 4

                          = 2 * 2 - 4

                          = 4 - 4

                          = 0

Since, measurement here can't be zero. We will take another value of x.

Case II : When x = 7,

Length of each side,

⇒ Hypotenuse = 2x - 4

                          = 7 * 2 - 4

                          = 14 - 4

                          = 10

⇒ Base = x - 1

              = 7 - 1

              = 6

⇒ Perpendicular = x + 1

                            = 7 + 1

                            = 8

Hence, the length of each side of the triangle are 10 inches, 8 inches and 6 inches respectively.

Attachments:
Similar questions