Math, asked by anasmohammadarif, 1 month ago

please help with this questions with steps

Attachments:

Answers

Answered by anindyaadhikari13
16

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given integral.

 \displaystyle =  \sf\int_{1}^{e}  \:  \dfrac{1}{x} \: dx

We know that:

 \displaystyle: \longmapsto  \sf\int \:  \dfrac{1}{x} \:  dx =  ln(x) + C

Therefore, we get:

 \displaystyle = \sf ln(x) \bigg|_{1}^{e}

 \displaystyle = \sf ln(e) -  ln(1)

As we know - e¹ = e and e⁰ = 1. We get:

 \displaystyle = \sf1 - 0

 =  \sf1

Therefore:

 \displaystyle: \longmapsto  \sf\int_{1}^{e}  \:  \dfrac{1}{x} \:  dx = 1

\textsf{\large{\underline{Answer}:}}

  • The result obtained after evaluating the given integral is 1.

\textsf{\large{\underline{Additional Information}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf kx+C\\ \\ \sf sin(x)&\sf-cos(x)+C\\ \\ \sf cos(x)&\sf sin(x)+C\\ \\ \sf{sec}^{2}(x)&\sf tan(x)+C\\ \\ \sf{cosec}^{2}(x)&\sf-cot(x)+C\\ \\ \sf sec(x)\  tan(x)&\sf sec(x)+C\\ \\ \sf cosec(x)\ cot(x)&\sf-cosec(x)+C\\ \\ \sf tan(x)&\sf log(sec(x))+C\\ \\ \sf\dfrac{1}{x}&\sf ln(x)+C\\ \\ \sf{e}^{x}&\sf{e}^{x}+C\\ \\ \sf x^{n},n\neq-1&\sf\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions