Math, asked by veeshh, 9 months ago

Please I want solution and answer​

Attachments:

Answers

Answered by sonali8882
0

Step-by-step explanation:

this the answer I hope it will help u thanks a lot fir taking my help.

Attachments:
Answered by MisterIncredible
13

Question : -

\sf{ \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt{225} }

ANSWER

Given : -

\sf{ \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt{225} }

Required to find : -

  • Value of

\sf{ \sqrt[4]{81} - 8 \sqrt[3]{216} + 15 \sqrt[5]{32} + \sqrt{225} }

Solution : -

  \sf \to \sqrt[4]{81}  - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225}  \\ \\ \rm we \: know \: that   \\ \\ \to \sf \sqrt[a]{x} =  {x}^{ \frac{1}{a} }  \\  \\ \to   \sf (81 {)}^{ \frac{1}{4} }  - 8(216 {)}^{ \frac{1}{ 3} }  + 15(32 {)}^{ \frac{1}{5} }  + (225 {)}^{ \frac{1}{2} }  \\  \\ \to  \sf ( {3}^{4}  {)}^{ \frac{1}{4} }  - 8( {6}^{3}  {)}^{ \frac{1}{ 3} }  + 15( {2}^{5}  {)}^{ \frac{1}{5} }  + ( {15}^{2}  {)}^{ \frac{1}{2} } \\   \\  \rm  \because ( {a}^{m}  {)}^{n}  =  {a}^{mn}  \\  \\  \to \sf  {3}^{ \frac{4}{4} }  - 8( {6}^{ \frac{3}{3} } ) + 15( {2}^{ \frac{5}{5} } ) +  {15}^{  \frac{2}{2}  }  \\  \\ \to \to  \sf 3 - 8(6) + 15(2) + 15 \\  \\ \to 3 - 48 + 30 + 15 \\  \\ \to 48 - 48 \\  \\ \to 0

\rule{400}{4}

Question : -

If x = 3 + √8 , then the value of ( x² + 1/x² )

Answer

Given : -

x = 3 + √8

Required to find : -

  • value of ( x² + 1/x² ) ?

Solution : -

x = 3 + √8

➞ x² =

➞ ( 3 + √8 )²

Using the identity ;

  • ( a + b )² = + + 2ab

➞ ( 3 + √8 )² =

➞ ( 3 )² + ( √8 )² + 2 ( 3 ) ( √8 )

➞ 9 + 8 + 6√8

➞ 17 + 6√8

1/x² =

➞ 1/ 17 + 6√8

Here we need to rationalize the denominator .

➞ Rationalising factor = 17 - 6√8

Multiply the numerator and denominator with 17 - 6√8

➞ 1/17 + 6√8 x 17 - 6√8/17 - 6√8

➞ 17 - 6√8/( 17 )² - ( 6√8 )²

➞ 17 - 6√8/289 - 288

➞ 17 - 6√8/1

➞ 17 - 6√8

value of x² + 1/x² is ;

➞ 17 + 6√8 + 17 - 6√18

➞ 17 + 17

➞ 34

\rule{400}{4}

Question : -

A rational number between √2 and √3

Answer

Given : -

√2 & √3

Required to find : -

  • A rational number in between them ?

Formula used : -

A rational number between any 2 rational numbers a & b is a+b/2

Solution : -

A rational number √2 and √3 is ;

Using the formula ,

A rational number between any 2 rational numbers a & b is a+b/2

➞ a + b/2

➞ (√2 + √3)/2

Hence,

➞ The rational number between √2 and √3 is (√2 +√3)/2

Similar questions