Math, asked by biswanath2004, 1 month ago

please integrate this​

Attachments:

Answers

Answered by mathdude500
2

Given Question is

\sf \: Evaluate : \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{3 + 3x +  {x}^{2} } }

Basic Concept Used :-

  • Method of Completing squares

Identities Used :-

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2}+  {a}^{2}}}  =  \:log |x +  \sqrt{ {x}^{2} +  {a}^{2} } | + c}}

Solution :-

\rm :\longmapsto\:\:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{3 + 3x +  {x}^{2} } }

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2} + 3x + 3}}

On adding and Subtracting the square of half of the coefficient of x, we get

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2} + 3x + {\bigg(\dfrac{3}{2}  \bigg) }^{2} - {\bigg(\dfrac{3}{2}  \bigg) }^{2} +   3}}

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{{\bigg(x + \dfrac{3}{2}  \bigg) }^{2} + 3 - \dfrac{9}{4}}}

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{{\bigg(x + \dfrac{3}{2}  \bigg) }^{2}  +\dfrac{12 - 9}{4}}}

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{{\bigg(x + \dfrac{3}{2}  \bigg) }^{2}  +\dfrac{3}{4}}}

 \sf \:  =  \:  \: \:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{{\bigg(x + \dfrac{3}{2}  \bigg) }^{2}  +{\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2}}}

 \sf \:  =  \:  \:  log \bigg |{\bigg(x + \dfrac{3}{2}  \bigg) } + \sqrt{{\bigg(x + \dfrac{3}{2}  \bigg) }^{2}  +{\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2}} \bigg| + c

 \sf \:  =  \:  \:  log \bigg |{\bigg(x + \dfrac{3}{2}  \bigg) } + \sqrt{{\bigg( {x}^{2} + \dfrac{9}{4}  + 3x \bigg) }  +{\bigg(\dfrac{3}{4}  \bigg) }} \bigg| + c

 \sf \:  =  \:  \:  log \bigg |{\bigg(x + \dfrac{3}{2}  \bigg) } + \sqrt{{{x}^{2} +  3x + 3}} \bigg| + c

Additional Information :-

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2} -   {a}^{2}}}  =  \:log |x +  \sqrt{ {x}^{2}  -   {a}^{2} } | + c}}

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } } = \dfrac{1}{a} {sin}^{ - 1}\dfrac{x}{a}  + c}}

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: \dfrac{dx}{ {x}^{2}  +  {a}^{2} } = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a}  + c}}

\boxed{ \red{ \bf \:\:  \displaystyle \int \sf \: \dfrac{dx}{ {x}^{2}  -  {a}^{2} } = \dfrac{1}{2a}log |\dfrac{x - a}{x + a} |  + c}}

Similar questions