Math, asked by Kosovo, 1 year ago

please its very very urgent , help me find the square root of 9716​

Answers

Answered by AbhijithPrakash
9

Answer:

\sqrt{9716}=2\sqrt{2429}\quad \left(\mathrm{Decimal:\quad }\:98.56977\dots \right)

Step-by-step explanation:

\sqrt{9716}

\black{\mathrm{Prime\:factorization\:of\:}9716:}

9716

\gray{9716\:\mathrm{divides\:by}\:2\quad \:9716=4858\cdot \:2}

=2\cdot \:4858

\gray{4858\:\mathrm{divides\:by}\:2\quad \:4858=2429\cdot \:2}

=2\cdot \:2\cdot \:2429

\gray{2429\:\mathrm{divides\:by}\:7\quad \:2429=347\cdot \:7}

=2\cdot \:2\cdot \:7\cdot \:347

\gray{2,\:7,\:347\mathrm{\:are\:all\:prime\:numbers,\:therefore\:no\:further\:factorization\:is\:possible}}

=2\cdot \:2\cdot \:7\cdot \:347

=2^2\cdot \:7\cdot \:347

=\sqrt{2^2\cdot \:7\cdot \:347}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}}

=\sqrt{2^2}\sqrt{7\cdot \:347}

\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}

\gray{\sqrt{2^2}=2}

=2\sqrt{7\cdot \:347}

\gray{\mathrm{Refine}}

=2\sqrt{2429}

Similar questions