Math, asked by lokpalranjeet66, 3 months ago

please jaldi batao koi detail ma​

Attachments:

Answers

Answered by ObsidionFury
1

Answer:

multiply it with √3+√2-√5/√3+√2-√5

Step-by-step explanation:

then the denominator will be 3-2+5 which is -4

numerator will be 3√3+3√2-3√5 I think...

hope it helps

Answered by itzPapaKaHelicopter
3

\huge \fbox \green{❤Solution:}

We Have

  \frac{3}{( \sqrt{3} -  \sqrt{2}  ) +  \sqrt{5} }  =  \frac{3}{( \sqrt{3 }  -  \sqrt{2}) +  \sqrt{5}  }  \times   \frac{( \sqrt{3 } -  \sqrt{2}) -  \sqrt{5}   }{( \sqrt{3}  -  \sqrt{2}) -  \sqrt{5}  }

 =  \frac{3( \sqrt{3}  -  \sqrt{2}  -  \sqrt{5}) }{( \sqrt{3}  -  \sqrt{2} {)}^{2}  - ( \sqrt{5} {)}^{2}   }  =

 \frac{3( \sqrt{3}  -  \sqrt{2} -  \sqrt{5})  }{[( \sqrt{3} {)}^{2}  + ( \sqrt{2}  {)}^{2}   - 2 \times  \sqrt{3} \times  \sqrt{2} ]  - 5}

 =  \frac{3( \sqrt{3}  -  \sqrt{2}  -  \sqrt{5} }{(3 + 2 - 2 \sqrt{6} ) - 5}  =  \frac{3( \sqrt{3}  -  \sqrt{2} -  \sqrt{5} ) }{ - 2 \sqrt{6} }  \times  \frac{ \sqrt{6} }{ \sqrt{6} }

 =  \frac{( \sqrt{18}  -  \sqrt{12}  -  \sqrt{30}) }{ - 2 \times 6}  =

 \frac{3(3 \sqrt{2}  - 2 \sqrt{3}  -  \sqrt{30} }{ - 12}

 =  \frac{3 \sqrt{2}  - 2 \sqrt{3}  -  \sqrt{30} }{ - 4}  =  \frac{2 \sqrt{3} +  \sqrt{30}   - 3 \sqrt{2} }{4}

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions